研究生: |
梁騰云 Liang, Teng-Yun |
---|---|
論文名稱: |
新型鎳系混成式奈米觸媒技術作為甲烷能源技術之相關應用 Synthesis of Nickel-based Hybrid Nanocatalyst for Methane-based Energy Applications |
指導教授: |
蔡德豪
Tsai, De-Hao |
口試委員: |
呂世源
Lu, Shih-Yuan 汪上曉 Wong, Shan-Hill |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 鎳 、甲烷 、能源 、觸媒 、奈米粒子 |
外文關鍵詞: | Nickel, Methane, Energy, catalyst, nanoparticle |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究工作的目的是希望開發出新型的材料製備技術用以生成鎳系混成式奈米觸媒,並將此觸媒應用在甲烷相關的能源科技當中,此觸媒需擁有非常良好的材料性質及催化活性,藉此提升甲烷的應用價值。
在第一部份的研究工作中,我們希望開發一種氣相合成方法用於製備混成式奈米粒子團簇(Ni-CeO2-Al2O3 NPC),並將其作為甲烷乾式重組的催化劑。在材料合成方面,我們利用實驗室現有的氣相奈米粒子合成系統以製備此混成式奈米粒子團簇,方法上結合了氣溶膠相的蒸發誘導自組裝原理以及氧化鋁奈米顆粒在噴霧後液滴內的膠體穩定化原理。本階段結果顯示,以氣相合成的奈米粒子團簇具有高分散性,同時藉由改變前驅物溶液的濃度及種類,可改變產物的組成、團簇大小及表面形態。與相關文獻的結果相比,本研究實現了更卓越的催化性能:較低的起始反應溫度、較高的活性和反應選擇性,以及長達8小時反應的操作穩定性,而在添加二氧化鈰後可在低溫環境操作下有較高的反應活性及操作穩定性,並且操作穩定性會隨著二氧化碳的濃度進一步地增加。
在第二部份的研究工作中,我們從鎳鈷雙金屬的金屬有機框架材料(M-MOF/Al2O3)中成功製備出了M@C/Al2O3混成式奈米結構,將其作為甲烷乾式重組的催化劑,能擁有較高的催化性能,在低溫環境下達到了較高的轉換頻率及產物選擇率,而鎳金屬觸媒在摻入鈷之後可以提高操作的穩定性。本階段結果顯示,MOF衍生的混成式奈米結構具有殼狀的碳包覆,然而此碳殼層並不會阻隔反應氣體的通過,因此對於甲烷乾式重組反應來說,可以在穩定操作的同時有效地降低積碳的生成,此研究將為催化劑的設計開闢了新的視野。
第三部份的研究工作我們用一新式氣溶膠合成概念,該方法可製備Ni-Ce-O混成式多孔奈米粒子,用於結合甲烷乾式重組與甲烷部分氧化的複合式甲烷重組反應(DRM+POM)。該合成方法是結合氣相蒸發誘導的聚乙二醇(PEG)在噴霧液滴中會聚集的原理,可利用PEG作為軟物質模板,接著對自組裝前驅物進行氣相的熱分解,並在其中形成中孔與微孔結構。結果表明,在氣相合成的過程中,透過使用PEG軟物質模板,會增加Ni-Ce-O混成式奈米結構中的比表面積和活性金屬表面積,並對複合式甲烷重組反應有很高的催化活性,而通過調整進料中的O2濃度,可調節H2/CO比例,從而實現較高的產物選擇性,並且藉由氧氣的添加能夠顯著地減少積碳的形成,使在100小時的反應中具有較高的操作穩定性。這項工作開發了一種氣相合成混成式奈米多孔結構的方法,可用於有效地催化複合式甲烷重組反應。
We aim to develop a new synthetic route for the fabrication of nickel-based hybrid nanocatalyst used for methane-based energy applications. The syngas, consisting of CO and H2, is an important feedstock for large-scale productions of a wide range of commodity chemicals including aldehyde, methanol, ammonia, and other oxygenated chemicals.
In the first part, a gas-phase approach is demonstrated for controlled synthesis of Ni-CeO2 nanocrystallites decorated on Al2O3 nanoparticle clusters (NPC) as the catalysts of dry reforming of methane with CO2 (DRM). The method combines the principles of aerosol-phase evaporation-induced self-assembly with colloid-phase stabilization of Al2O3 nanoparticles in sprayed aqueous droplets. Hybrid NPC was successfully created with ultrafine Ni crystallites, tunable chemical composition, cluster size and surface state. A superior high catalytic performance achieved in comparison to the results reported in the literatures: low starting temperature, high turnover frequency, high selectivity and high stability over 8-h reaction. Hybridization with Al2O3 NPC and CeO2 nanoparticle significantly improved operation stability of Ni catalyst. The work demonstrates a facile route for gas-phase synthesis of hybrid nanocatalysts using Al2O3 NPC as support matrix for effective low-temperature operations of DRM.
In the second part, we developed NiCo@C nanocomposites from corresponding NiCo-based bimetallic metal-organic framework (MOF) to serve as high performance catalysts for the DRM process, achieving high turnover frequencies (TOF) at low temperatures and high product selectivities. Incorporation of Co in Ni catalysts improves the operation stability and light-off stability. The present development for MOF-derived nanocomposites opens a new horizon for design of DRM catalysts.
In the third part, a refined gas-phase controlled synthesis method was demonstrated to prepare Ni-Ce-O hybrid nanoporous particle for synergistic catalysis of dry reforming of methane (DRM) coupled with partial oxidation of methane (POM). The method combines the principles of aerosol-phase evaporation-induced aggregation of polyethylene glycol (PEG) as soft template in sprayed aqueous droplets, followed by a direct gas-phase thermal decomposition of the self-assembled precursor crystallites for the creation of mesopores in the hybrid nanostructure. The results show increases of specific surface area and metal surface area in the Ni-Ce-O hybrid nanostructure by using the PEG template during the gas-phase synthesis. A high catalytic activity in term of turnover frequency of methane achieved, and the ratio of H2/CO was tunable through the adjustment of O2 concentration in the feed to accomplish high selectivity for syngas production. High light-off stability was observed, and high operation stability over 100-h reaction achieved through a remarkable reduction of coke formation. The work demonstrates a facile route for gas-phase synthesis of hybrid nanoporous catalyst useful for effective methane-based combined reactions.
[1] C. Papadopoulou, H. Matralis, X. Verykios, Utilization of Biogas as a Renewable Carbon Source: Dry Reforming of Methane, in: Catalysis for Alternative Energy Generation, 2012, pp. 57-127.
[2] D. Pakhare, J. Spivey, A Review of Dry (CO2) Reforming of Methane over Noble Metal Catalysts, Chemical Society Reviews, 43 (2014) 7813-7837.
[3] J.R. Rostrup-Nielsen, J.H.B. Hansen, CO2-Reforming of Methane over Transition Metals, Journal of Catalysis, 144 (1993) 38-49.
[4] J.R. Rostrup-Nielsen, J. Sehested, J.K. Nørskov, Hydrogen and Synthesis Gas by Steam and CO2 Reforming, in: Advances in Catalysis, Academic Press, 2002, pp. 65-139.
[5] M. Aresta, Carbon Dioxide as Chemical Feedstock, Wiley-VCH, Weinheim, 2010.
[6] M.C.J. Bradford, M.A. Vannice, CO2 Reforming of CH4, Catalysis Reviews, 41 (1999) 1-42.
[7] M.C.J. Bradford, M.A. Vannice, Catalytic Reforming of Methane with Carbon Dioxide over Nickel Catalysts I. Catalyst Characterization and Activity, Applied Catalysis A: General, 142 (1996) 73-96.
[8] J.D. Holladay, J. Hu, D.L. King, Y. Wang, An Overview of Hydrogen Production Technologies, Catalysis Today, 139 (2009) 244-260.
[9] S.D. Angeli, G. Monteleone, A. Giaconia, A.A. Lemonidou, State-of-the-art Catalysts for CH4 Steam Reforming at Low Temperature, International Journal of Hydrogen Energy, 39 (2014) 1979-1997.
[10] Y. Matsumura, T. Nakamori, Steam Reforming of Methane over Nickel Catalysts at Low Reaction Temperature, Applied Catalysis A: General, 258 (2004) 107-114.
[11] Q. Wei, X. Gao, G. Liu, R. Yang, H. Zhang, G. Yang, Y. Yoneyama, N. Tsubaki, Facile One-step Synthesis of Mesoporous Ni-Mg-Al Catalyst for Syngas Production Using Coupled Methane Reforming Process, Fuel, 211 (2018) 1-10.
[12] V.R. Choudhary, K.C. Mondal, CO2 Reforming of Methane Combined with Steam Reforming or Partial Oxidation of Methane to Syngas over NdCoO3 Perovskite-type Mixed Metal-Oxide Catalyst, Applied Energy, 83 (2006) 1024-1032.
[13] Y.J.O. Asencios, E.M. Assaf, Combination of Dry Reforming and Partial Oxidation of Methane on NiO–MgO–ZrO2 Catalyst: Effect of Nickel Content, Fuel Processing Technology, 106 (2013) 247-252.
[14] R.A. Dixon, R.G. Egdell, Direct Observation of Sintering in a Model Oxide Supported Metal Catalyst STM of Pd on WO3(001), Journal of the Chemical Society, Faraday Transactions, 94 (1998) 1329-1331.
[15] J.Q. Tian, B. Ma, S.Y. Bu, Q.H. Yuan, C. Zhao, One-pot Synthesis of Highly Sintering- and Coking-resistant Ni Nanoparticles Encapsulated in Dendritic Mesoporous SiO2 for Methane Dry Reforming, Chem Commun (Camb), 54 (2018) 13993-13996.
[16] Z. Li, Z. Wang, S. Kawi, Sintering and Coke Resistant Core/Yolk Shell Catalyst for Hydrocarbon Reforming, ChemCatChem, 11 (2019) 202-224.
[17] Z. Li, Z. Wang, B. Jiang, S. Kawi, Sintering Resistant Ni Nanoparticles Exclusively Confined within SiO2 Nanotubes for CH4 Dry Reforming, Catalysis Science & Technology, 8 (2018) 3363-3371.
[18] Y. Nagai, T. Hirabayashi, K. Dohmae, N. Takagi, T. Minami, H. Shinjoh, S.i. Matsumoto, Sintering Inhibition Mechanism of Platinum Supported on Ceria-based Oxide and Pt-oxide–support Interaction, Journal of Catalysis, 242 (2006) 103-109.
[19] H. Ay, D. Üner, Dry reforming of Methane over CeO2 Supported Ni, Co and Ni–Co Catalysts, Applied Catalysis B: Environmental, 179 (2015) 128-138.
[20] V.M. Gonzalez-Delacruz, R. Pereñiguez, F. Ternero, J.P. Holgado, A. Caballero, Modifying the Size of Nickel Metallic Particles by H2/CO Treatment in Ni/ZrO2 Methane Dry Reforming Catalysts, ACS Catalysis, 1 (2011) 82-88.
[21] T.D. Gould, A. Izar, A.W. Weimer, J.L. Falconer, J.W. Medlin, Stabilizing Ni Catalysts by Molecular Layer Deposition for Harsh, Dry Reforming Conditions, ACS Catalysis, 4 (2014) 2714-2717.
[22] T.Y. Liang, C.Y. Lin, F.C. Chou, M.Q. Wang, D.H. Tsai, Gas-Phase Synthesis of Ni–CeOx Hybrid Nanoparticles and Their Synergistic Catalysis for Simultaneous Reforming of Methane and Carbon Dioxide to Syngas, The Journal of Physical Chemistry C, 122 (2018) 11789-11798.
[23] M. Khzouz, J. Wood, B. Pollet, W. Bujalski, Characterization and Activity Test of Commercial Ni/Al2O3, Cu/ZnO/Al2O3 and Prepared Ni–Cu/Al2O3 Catalysts for Hydrogen Production from Methane and Methanol Fuels, International Journal of Hydrogen Energy, 38 (2013) 1664-1675.
[24] S. Das, J. Ashok, Z. Bian, N. Dewangan, M.H. Wai, Y. Du, A. Borgna, K. Hidajat, S. Kawi, Silica–Ceria Sandwiched Ni Core–Shell Catalyst for Low Temperature Dry Reforming of Biogas: Coke Resistance and Mechanistic Insights, Applied Catalysis B: Environmental, 230 (2018) 220-236.
[25] C.J. Chen, X.G. Wang, H.G. Huang, X.J. Zou, F.G. Gu, F.B. Su, X.G. Lu, Synthesis of Mesoporous Ni–La–Si Mixed Oxides for CO2 Reforming of CH4 with a high H2 selectivity, Fuel Processing Technology, 185 (2019) 56-67.
[26] Z. Li, Y. Kathiraser, J. Ashok, U. Oemar, S. Kawi, Simultaneous Tuning Porosity and Basicity of Nickel@Nickel–Magnesium Phyllosilicate Core–Shell Catalysts for CO2 Reforming of CH4, Langmuir, 30 (2014) 14694-14705.
[27] X. Zhao, H. Li, J. Zhang, L. Shi, D. Zhang, Design and Synthesis of NiCe@m-SiO2 Yolk-shell Framework Catalysts with Improved Coke- and Sintering-resistance in Dry Reforming of Methane, International Journal of Hydrogen Energy, 41 (2016) 2447-2456.
[28] A. Jalal, A. Uzun, An Ordinary Nickel Catalyst Becomes Completely Selective for Partial Hydrogenation of 1,3-butadiene when Coated with Tributyl(methyl)phosphonium Methyl Sulfate, Applied Catalysis A: General, 562 (2018) 321-326.
[29] A. Jalal, A. Uzun, An Exceptional Selectivity for Partial Hydrogenation on a Supported Nickel Catalyst Coated with [BMIM][BF4], Journal of Catalysis, 350 (2017) 86-96.
[30] X.j. Du, D.s. Zhang, L.y. Shi, R.h. Gao, J.p. Zhang, Morphology Dependence of Catalytic Properties of Ni/CeO2 Nanostructures for Carbon Dioxide Reforming of Methane, The Journal of Physical Chemistry C, 116 (2012) 10009-10016.
[31] Z.W. Li, L.Y. Mo, Y. Kathiraser, S. Kawi, Yolk–Satellite–Shell Structured Ni–Yolk@Ni@SiO2 Nanocomposite: Superb Catalyst toward Methane CO2 Reforming Reaction, ACS Catalysis, 4 (2014) 1526-1536.
[32] H. Tian, X. Li, L. Zeng, J. Gong, Recent Advances on the Design of Group VIII Base-Metal Catalysts with Encapsulated Structures, ACS Catalysis, 5 (2015) 4959-4977.
[33] C.E. Daza, A. Kiennemann, S. Moreno, R. Molina, Dry Reforming of Methane Using Ni–Ce Catalysts Supported on a Modified Mineral Clay, Applied Catalysis A: General, 364 (2009) 65-74.
[34] R. Yang, C. Xing, C. Lv, L. Shi, N. Tsubaki, Promotional Effect of La2O3 and CeO2 on Ni/γ-Al2O3 Catalysts for CO2 Reforming of CH4, Applied Catalysis A: General, 385 (2010) 92-100.
[35] X. Gao, Z. Tan, K. Hidajat, S. Kawi, Highly Reactive Ni-Co/SiO2 Bimetallic Catalyst via Complexation with Oleylamine/Oleic Acid Organic Pair for Dry Reforming of Methane, Catalysis Today, 281 (2017) 250-258.
[36] Z. Bian, S. Das, M.H. Wai, P. Hongmanorom, S. Kawi, A Review on Bimetallic Nickel-Based Catalysts for CO2 Reforming of Methane, ChemPhysChem, 18 (2017) 3117-3134.
[37] S. Wang, G.Q. Lu, Role of CeO2 in Ni/CeO2–Al2O3 Catalysts for Carbon Dioxide Reforming of Methane, Applied Catalysis B: Environmental, 19 (1998) 267-277.
[38] V.M. Gonzalez-delaCruz, R. Pereñiguez, F. Ternero, J.P. Holgado, A. Caballero, In Situ XAS Study of Synergic Effects on Ni–Co/ZrO2 Methane Reforming Catalysts, The Journal of Physical Chemistry C, 116 (2012) 2919-2926.
[39] R. Dębek, M. Radlik, M. Motak, M.E. Galvez, W. Turek, P. Da Costa, T. Grzybek, Ni-containing Ce-promoted Hydrotalcite Derived Materials as Catalysts for Methane Reforming with Carbon Dioxide at Low Temperature – On the Effect of Basicity, Catalysis Today, 257 (2015) 59-65.
[40] H.J. Wang, X.D. Li, X.C. Lan, T.F. Wang, Supported Ultrafine NiCo Bimetallic Alloy Nanoparticles Derived from Bimetal-Organic Frameworks: A Highly Active Catalyst for Furfuryl Alcohol Hydrogenation, ACS Catalysis, 8 (2018) 2121-2128.
[41] Z. Lian, S.O. Olanrele, C. Si, M. Yang, B. Li, Critical Role of Interfacial Sites between Nickel and CeO2 Support in Dry Reforming of Methane: Revisit of Reaction Mechanism and Origin of Stability, Journal of Physical Chemistry C, 124 (2020) 5118-5124.
[42] W.T. Gibbons, L.J. Venstrom, R.M. De Smith, J.H. Davidson, G.S. Jackson, Ceria-based Electrospun Fibers for Renewable Fuel Production via Two-Step Thermal Redox Cycles for Carbon Dioxide Splitting, Physical Chemistry Chemical Physics, 16 (2014) 14271-14280.
[43] X.L. Zhu, P.P. Huo, Y.P. Zhang, D.G. Cheng, C.J. Liu, Structure and Reactivity of Plasma treated Ni/Al2O3 Catalyst for CO2 Reforming of Methane, Applied Catalysis B: Environmental, 81 (2008) 132-140.
[44] D.S. Jung, S.B. Park, Y.C. Kang, Design of Particles by Spray Pyrolysis and Recent Progress in its Application, Korean Journal of Chemical Engineering, 27 (2010) 1621-1645.
[45] A.K. Peterson, D.G. Morgan, S.E. Skrabalak, Aerosol Synthesis of Porous Particles Using Simple Salts as a Pore Template, Langmuir, 26 (2010) 8804-8809.
[46] H. Chang, H.D. Jang, Controlled Synthesis of Porous Particles via Aerosol Processing and their Applications, Advanced Powder Technology, 25 (2014) 32-42.
[47] F.C. Lee, Y.F. Lu, F.C. Chou, C.F. Cheng, R.M. Ho, D.H. Tsai, Mechanistic Study of Gas-Phase Controlled Synthesis of Copper Oxide-Based Hybrid Nanoparticle for CO Oxidation, The Journal of Physical Chemistry C, 120 (2016) 13638-13648.
[48] C.Y. Lin, F.C. Chou, D.H. Tsai, Mechanistic Understanding of Surface Reduction of CuCeO Hybrid Nanoparticles for Catalytic Methane Combustion, Journal of the Taiwan Institute of Chemical Engineers, 92 (2018) 80-90.
[49] Y.F. Lu, F.C. Chou, F.C. Lee, C.Y. Lin, D.H. Tsai, Synergistic Catalysis of Methane Combustion Using Cu–Ce–O Hybrid Nanoparticles with High Activity and Operation Stability, The Journal of Physical Chemistry C, 120 (2016) 27389-27398.
[50] W. Liu, W.D. Wu, C. Selomulya, X.D. Chen, Facile Spray-Drying Assembly of Uniform Microencapsulates with Tunable Core–Shell Structures and Controlled Release Properties, Langmuir, 27 (2011) 12910-12915.
[51] D.A. Firmansyah, S.-G. Kim, K.-S. Lee, R. Zahaf, Y.H. Kim, D. Lee, Microstructure-Controlled Aerosol–Gel Synthesis of ZnO Quantum Dots Dispersed in SiO2 Nanospheres, Langmuir, 28 (2012) 2890-2896.
[52] Y. Isomura, T. Narushima, H. Kawasaki, T. Yonezawa, Y. Obora, Surfactant-free Single-nano-sized Colloidal Cu Nanoparticles for Use as an Active Catalyst in Ullmann-Coupling Reaction, Chem Commun, 48 (2012) 3784-3786.
[53] R.K. Pati, I.C. Lee, S.C. Hou, O. Akhuemonkhan, K.J. Gaskell, Q. Wang, A.I. Frenkel, D. Chu, L.G. Salamanca-Riba, S.H. Ehrman, Flame Synthesis of Nanosized Cu−Ce−O, Ni−Ce−O, and Fe−Ce−O Catalysts for the Water-Gas Shift (WGS) Reaction, ACS Applied Materials & Interfaces, 1 (2009) 2624-2635.
[54] H.L. Wang, H. Yeh, Y.C. Chen, Y.C. Lai, C.Y. Lin, K.Y. Lu, R.M. Ho, B.H. Lo, C.H. Lin, D.H. Tsai, Thermal Stability of Metal-Organic Frameworks and Encapsulation of CuO Nanocrystals for Highly Active Catalysis, ACS Applied Materials & Interfaces, 10 (2018) 9332-9341.
[55] H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to Metal–Organic Frameworks, Chemical Reviews, 112 (2012) 673-674.
[56] S. Dang, Q.L. Zhu, Q. Xu, Nanomaterials Derived from Metal–Organic Frameworks, Nature Reviews Materials, 3 (2017) 17075.
[57] X.R. Li, X.C. Yang, H.G. Xue, H. Pang, Q. Xu, Metal-Organic Frameworks as a Platform for Clean Energy Applications, EnergyChem, (2020) 100027.
[58] Z.B. Liang, R. Zhao, T.J. Qiu, R.Q. Zou, Q. Xu, Metal-Organic Framework-Derived Materials for Electrochemical Energy Applications, EnergyChem, 1 (2019) 100001.
[59] B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-Organic Framework as a Template for Porous Carbon Synthesis, Journal of the American Chemical Society, 130 (2008) 5390-5391.
[60] L. Oar-Arteta, T. Wezendonk, X. Sun, F. Kapteijn, J. Gascon, Metal Organic Frameworks as Precursors for the Manufacture of Advanced Catalytic Materials, Materials Chemistry Frontiers, 1 (2017) 1709-1745.
[61] J.K. Sun, Q. Xu, Functional Materials Derived from Open Framework Templates/precursors: Synthesis and Applications, Energy & Environmental Science, 7 (2014) 2071-2100.
[62] W. Xia, A. Mahmood, R.Q. Zou, Q. Xu, Metal–Organic Frameworks and their Derived Nanostructures for Electrochemical Energy Storage and Conversion, Energy & Environmental Science, 8 (2015) 1837-1866.
[63] Z. Bian, I.Y. Suryawinata, S. Kawi, Highly Carbon Resistant Multicore-Shell Catalyst Derived from Ni-Mg Phyllosilicate Nanotubes@Silica for Dry Reforming of Methane, Applied Catalysis B: Environmental, 195 (2016) 1-8.
[64] N. Wang, K. Shen, L.H. Huang, X.P. Yu, W.Z. Qian, W. Chu, Facile Route for Synthesizing Ordered Mesoporous Ni–Ce–Al Oxide Materials and Their Catalytic Performance for Methane Dry Reforming to Hydrogen and Syngas, ACS Catalysis, 3 (2013) 1638-1651.
[65] R.L. Vander Wal, T.M. Ticich, V.E. Curtis, Substrate–Support Interactions in Metal-Catalyzed Carbon Nanofiber Growth, Carbon, 39 (2001) 2277-2289.
[66] V.A. Tsipouriari, X.E. Verykios, Kinetic Study of the Catalytic Reforming of Methane with Carbon Dioxide to Synthesis Gas over Ni/La2O3 catalyst, Catalysis Today, 64 (2001) 83-90.
[67] Y. Yang, W. Li, H. Xu, A New Explanation for the Carbon Deposition and Elimination over Supported Ni, Ni-Ce and Ni-Co Catalysts for CO2-reforming of Methane, Reaction Kinetics and Catalysis Letters, 77 (2002) 155-162.
[68] Y.T. Tseng, W.H. Tseng, C.H. Lin, R.M. Ho, Fabrication of Double‐Length‐Scale Patterns via Lithography, Block Copolymer Templating, and Electrodeposition, Advanced Materials, 19 (2007) 3584-3588.
[69] T.Y. Liang, H.H. Chen, D.H. Tsai, Nickel Hybrid Nanoparticle Decorating on Alumina Nanoparticle Cluster for Synergistic Catalysis of Methane Dry Reforming, Fuel Processing Technology, 201 (2020) 106335.
[70] H.D. Jang, H. Chang, K. Cho, F. Kim, K. Sohn, J. Huang, Co-Assembly of Nanoparticles in Evaporating Aerosol Droplets: Preparation of Nanoporous Pt/TiO2 Composite Particles, Aerosol Science and Technology, 44 (2010) 1140-1145.
[71] C. Shang, Z. Wu, W.D. Wu, X.D. Chen, Chemical Crosslinking Assembly of ZSM-5 Nanozeolites into Uniform and Hierarchically Porous Microparticles for High-Performance Acid Catalysis, ACS Applied Materials & Interfaces, 11 (2019) 16693-16703.
[72] Y.A. Sun, L.T. Chen, S.Y. Hsu, C.C. Hu, D.H. Tsai, Silver Nanoparticles-Decorating Manganese Oxide Hybrid Nanostructures for Supercapacitor Applications, Langmuir, 35 (2019) 14203-14212.
[73] D. Senthil Raja, H.W. Lin, S.Y. Lu, Synergistically Well-mixed MOFs Grown on Nickel Foam as Highly Efficient Durable Bifunctional Electrocatalysts for Overall Water Splitting at High Current Densities, Nano Energy, 57 (2019) 1-13.
[74] J. Dixkens, H. Fissan, Development of an Electrostatic Precipitator for Off-Line Particle Analysis, Aerosol Science and Technology, 30 (1999) 438-453.
[75] G.H. Lai, J.H. Lak, D.H. Tsai, Hydrogen Production via Low-Temperature Steam–Methane Reforming Using Ni–CeO2–Al2O3 Hybrid Nanoparticle Clusters as Catalysts, ACS Applied Energy Materials, 2 (2019) 7963-7971.
[76] P. Pal, R.K. Singha, A. Saha, R. Bal, A.B. Panda, Defect-Induced Efficient Partial Oxidation of Methane over Nonstoichiometric Ni/CeO2 Nanocrystals, Journal of Physical Chemistry C, 119 (2015) 13610-13618.
[77] S.A. Theofanidis, V.V. Galvita, H. Poelman, G.B. Marin, Enhanced Carbon-Resistant Dry Reforming Fe-Ni Catalyst: Role of Fe, ACS Catalysis, 5 (2015) 3028-3039.
[78] R. Dębek, M. Motak, M.E. Galvez, T. Grzybek, P. Da Costa, Promotion Effect of Zirconia on Mg(Ni,Al)O Mixed Oxides Derived from Hydrotalcites in CO2 Methane Reforming, Applied Catalysis B: Environmental, 223 (2018) 36-46.
[79] M. Jafarbegloo, A. Tarlani, A.W. Mesbah, S. Sahebdelfar, Thermodynamic Analysis of Carbon Dioxide Reforming of Methane and its Practical Relevance, International Journal of Hydrogen Energy, 40 (2015) 2445-2451.
[80] C.j. Liu, J.y. Ye, J.j. Jiang, Y.x. Pan, Progresses in the Preparation of Coke Resistant Ni-based Catalyst for Steam and CO2 Reforming of Methane, ChemCatChem, 3 (2011) 529-541.
[81] B. Pawelec, S. Damyanova, K. Arishtirova, J.L.G. Fierro, L. Petrov, Structural and Surface Features of PtNi Catalysts for Reforming of Methane with CO2, Applied Catalysis A: General, 323 (2007) 188-201.
[82] I.V. Yentekakis, G. Goula, M. Hatzisymeon, I. Betsi-Argyropoulou, G. Botzolaki, K. Kousi, D.I. Kondarides, M.J. Taylor, C.M.A. Parlett, A. Osatiashtiani, G. Kyriakou, J.P. Holgado, R.M. Lambert, Effect of Support Oxygen Storage Capacity on the Catalytic Performance of Rh Nanoparticles for CO2 Reforming of Methane, Applied Catalysis B: Environmental, 243 (2019) 490-501.
[83] Y. Kathiraser, W. Thitsartarn, K. Sutthiumporn, S. Kawi, Inverse NiAl2O4 on LaAlO3–Al2O3: Unique Catalytic Structure for Stable CO2 Reforming of Methane, The Journal of Physical Chemistry C, 117 (2013) 8120-8130.
[84] T.Y. Liang, D. Senthil Raja, K.C. Chin, C.-L. Huang, S.A.P. Sethupathi, L.K. Leong, D.H. Tsai, S.-Y. Lu, Bimetallic Metal–Organic Framework-Derived Hybrid Nanostructures as High-Performance Catalysts for Methane Dry Reforming, ACS Applied Materials & Interfaces, 12 (2020) 15183-15193.
[85] R. Dębek, M. Motak, D. Duraczyska, F. Launay, M.E. Galvez, T. Grzybek, P. Da Costa, Methane Dry Reforming over Hydrotalcite-derived Ni–Mg–Al Mixed Oxides: the Influence of Ni Content on Catalytic Activity, Selectivity and Stability, Catalysis Science & Technology, 6 (2016) 6705-6715.
[86] C.J. Chen, X.G. Wang, H.G. Huang, X.J. Zou, F.N. Gu, F.B. Su, X.G. Lu, Synthesis of Mesoporous Ni-La-Si Mixed Oxides for CO2 Reforming of CH4 with a High H2 Selectivity, Fuel Processing Technology, 185 (2019) 56-67.
[87] A. Carné-Sánchez, I. Imaz, M. Cano-Sarabia, D. Maspoch, A Spray-Drying Strategy for Synthesis of Nanoscale Metal–Organic Frameworks and their Assembly into Hollow Superstructures, Nature Chemistry, 5 (2013) 203.
[88] H.S. Roh, K.W. Jun, W.S. Dong, S.E. Park, Y.S. Baek, Highly Stable Ni Catalyst Supported on Ce–ZrO2 for Oxy-Steam Reforming of Methane, Catalysis Letters, 74 (2001) 31-36.
[89] W.S. Dong, H.S. Roh, K.W. Jun, S.E. Park, Y.S. Oh, Methane Reforming over Ni/Ce-ZrO2 Catalysts: Effect of Nickel Content, Applied Catalysis A: General, 226 (2002) 63-72.
[90] A. Vita, G. Cristiano, C. Italiano, L. Pino, S. Specchia, Syngas Production by Methane Oxy-Steam Reforming on Me/CeO2 (Me=Rh, Pt, Ni) Catalyst lined on Cordierite Monoliths, Applied Catalysis B: Environmental, 162 (2015) 551-563.
[91] N. Kumar, Z. Wang, S. Kanitkar, J. Spivey, Methane Reforming over Ni-based Pyrochlore Catalyst: Deactivation Studies for Different Reactions, Applied Petrochemical Research, 6 (2016) 201-207.
[92] K.Y. Koo, H.S. Roh, Y.T. Seo, D.J. Seo, W.L. Yoon, S.B. Park, Coke Study on MgO-promoted Ni/Al2O3 Catalyst in Combined H2O and CO2 Reforming of Methane for Gas to Liquid (GTL) Process, Applied Catalysis A: General, 340 (2008) 183-190.
[93] K.Y. Koo, H.S. Roh, U.H. Jung, D.J. Seo, Y.S. Seo, W.L. Yoon, Combined H2O and CO2 reforming of CH4 over Nano-sized Ni/MgO-Al2O3 Catalysts for Synthesis Gas Production for Gas to Liquid (GTL): Effect of Mg/Al Mixed Ratio on Coke Formation, Catalysis Today, 146 (2009) 166-171.
[94] D.Y. Qin, J. Lapszewicz, X.Z. Jiang, Comparison of Partial Oxidation and Steam-CO2 Mixed Reformingof CH4 to Syngas on MgO-Supported Metals, Journal of Catalysis, 159 (1996) 140-149.