簡易檢索 / 詳目顯示

研究生: 游步庭
Yu, Pu-Ting
論文名稱: 薛丁格方程式的局部適定性
On the local-wellposedness of the Schrödinger equation
指導教授: 江金城
Jiang, Jin-Cheng
口試委員: 蔡東和
Tsai, Dong-He
念家興
Nian, Jia-Xing
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 27
中文關鍵詞: 薛丁格
外文關鍵詞: Schrödinger equation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是探討 線性的 薛丁格方程式 及波方程式 的 Stric hartz artz artz artz 估計,在介紹完 Strichartz估計,我們針對一組非線性 薛丁格方程式,並應用 Strichartz估計去證明在某些空間下該非線性薛丁格方程式的局部適定性 。


    This dissertation is focusing on introducing and proving Strichartz estimates for linear Schrodinger equation and wave equation and their application to the Cauchy problem of Schrodinger equation.
    We will use some techniques of real analysis to prove them, so at the rst, we will introduce some tools of real analysis such as some operations, theorems of real analysis, and any tools we will use in order to avoid confusion.
    Second, we focus on proving Strichartz estimate for linear Schrodinger equation and wave equation. For Schrodinger eqaution ,the most important tool we apply is Hardy-Littlewood-Sobolev Theorem which helps us transform a property of solutions of Schrodinger equation into a estimate under the so-called mixed norm.
    For Wave equation, we focus on R3, and the main idea is we consider homogeneous case with given initial datum and inhomogeneous case but with zero initial datum, respectively, and derive estimates we want respectively, nally combine them and apply Triangle inequality to get the Strichartz Estimate.
    And in the last section, we show a application of linear Strichartz estimate for a Schrodinger equation which indicates under some certain conditions and speci c spaces, the local well-posedness of a nonlinear Schrodinger equation will be assured.

    Contents 1 Introduction 3 2 Strichartz Estimate 4 2.1 Strichartz estimate for linear Schrodinger equations . . . . . . 4 2.2 Strichartz estimate for wave equation . . . . . . . . . . . . . . 12 3 Local theory in L2 21

    [1] Terence Tao, Nonlinear Dispersive Equations : local and global analysis, CBMS regional conference series in mathematics, July 2006.
    [2] F.Linares and G.Ponce, Introduction to Nonlinear Dispersive Equations,Springer, June 2008.
    [3] Christopher D.Sogge, Lecture on Nonlinear Wave Equations,international Press, February 2008.
    [4] Gerald B.Folland, Fourier analysis and its applications,
    Providence, R.I.: American Mathematical Society, January 2009.
    [5] Gerald B.Folland, Real analysis : modern techniques and their applications,New York : Wiley, March 1999.
    [6] Y. Tsutsumi, L2 solutions for nonlinear Schrodinger equations and nonlinear groups, Funkcialaj Ekvacioj. 30(1987), 115-125.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE