研究生: |
陳煌翔 Chen,Huang-Hsiang |
---|---|
論文名稱: |
國小五、六年級學童於代數關係理解之研究 A Study of Algebraic relationship on Fifth and sixth grade students |
指導教授: |
許慧玉
Hsu, Hui-Yu |
口試委員: |
陳建誠
Chen, Jian-Cheng 陳正忠 Chen, Jeng-Chung |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所 Graduate Institute of Mathematics and Science Education |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 代數 、代數思維 、代數學習目標 、問卷調查法 |
外文關鍵詞: | algebra, algebraic thinking, algebraic learning objectives, questionnaire method |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的主要是根據Blanton等人於2019年所發表的三個代數學習目標來分
析我國五、六年級學生在代數學習上的差異,並對照到九年一貫與十二年國教數學科的差異,藉以提出對於未來教學之建議。利用問卷調查法的方式,共設計了九大題開放式的問答題讓學生回答,希望學生可以透過開放式的問答盡可能地將自己的想法以文字、圖像表徵或是數學計算及公式等方法展示出來,研究者再根據Blanton等人的分析架構來比對我國學生在不同學習階段中代數思維的發展。根據分析結果,我們發現:(1)國小學生在方程式的解題上表現能力較佳(2)當等價關係從「算式與答案」變成了「題意與算式」時學生較容易產生迷思概念(3)學生的既定認知可能會覺得答案一定要是以單一數值的形式表現(4)學生沒有足夠的未知符號系統(5)學生不需要對數列中的變化有太深入的了解也能夠以較複雜方式思考變量間的函數關係(6)學生在代數的思維上可能都還只停留在概括的層次,而無法將眾多實例彙整成一條通則。
The purpose of this study is to analyze the differences in algebra learning among fifth- and
sixth-grade students in our country based on the three algebraic learning objectives published by Blanton et al. In order to make recommendations for future teaching we compared the differences between the Grade 1-9 Curriculum and 12-year Basic Education algebra teaching.
Using the method of questionnaire survey, a total of nine open-ended questions are designed for students to answer, and the development of algebraic thinking of Taiwanese students in different learning stages is compared from the analytical framework of Blanton et al. According to the analysis results, we found:(1)Elementary school students are better at solving equations.
(2)When the equivalence relationship is changed from "calculation and answer" to "question meaning and calculation", students are more likely to have misunderstandings. (3)The student's established cognition may feel that the answer must be expressed in the form of a single numerical value. (4)The student does not have enough unknown symbol systems.(5)Students do not need to have an in-depth understanding of changes in sequences to be able to think about functional relationships between variables in more complex ways.(6)Students may still only stay at the level of generalization in their algebraic thinking, and cannot integrate many examples into a general rule.
一、中文文獻
林生傳(2003)。紮根理論研究法評介。載於齊力、林本炫(合編),質性研究方
法與資料分析(頁171-200)。嘉義縣:南華大學教育社會學研究所。
張春興(1997)。教育心理學。台北:東華。
謝佳叡(2003)。從算術思維過渡到代數思維。取自
https://max.book118.com/html/2016/0421/40946742.shtm
劉家樟、楊凱琳、許慧玉(2012)。小六學生不同代數表徵的解題表現、教
師布題順序與代數 教學信念之研究。當代教育研究季刊, 20(2),93-
133。
陳嘉皇(2007)。國小三年級學童代數推理教學與解題表現研究。高雄師大
學報:自然科學與科技類,(23),125-150。
陳嘉皇、梁淑坤(2014)。表徵與國小學生代數思考之初探性研究。教育研究集刊,
60(2),1-40。
陳彥廷、柳賢(2009)。運用提問方式促進中學生對代數式中文字符號語意
理解之研究。科學教育學刊,17(3),203-231。
教育部(2008)。國民中小學九年一貫課程綱要數學學習領域。台北市:教
育部。
教育部(2014)。十二年國民基本教育課程綱要總綱。取自
http://www.fhsh.tp.edu.tw/sub/office01/%E5%AF%A6%E7%A0%94%E7%B5%84%E8%B3%87%E6%96%99/%E5%8D%81%E4%BA%8C%E5%B9%B4%E5%9C%8B%E6%B0%91%E5%9F%BA%E6%9C%AC%E6%95%99%E8%82%B2%E8%AA%B2%E7%A8%8B%E7%B6%B1%E8%A6%81%E7%B8%BD%E7%B6%B1%E7%99%BC%E5%B8%83%E7%89%88.pdf
教育部(2018)。十二年國民基本教育課程綱要數學領域。取自
https://www.k12ea.gov.tw/files/class_schema/%E8%AA%B2%E7%B6%B1/12-%E6%95%B8%E5%AD%B8/12-1/%E5%8D%81%E4%BA%8C%E5%B9%B4%E5%9C%8B%E6%B0%91%E5%9F%BA%E6%9C%AC%E6%95%99%E8%82%B2%E8%AA%B2%E7%A8%8B%E7%B6%B1%E8%A6%81%E5%9C%8B%E6%B0%91%E4%B8%AD%E5%B0%8F%E5%AD%B8%E6%9A%A8%E6%99%AE%E9%80%9A%E5%9E%8B%E9%AB%98%E7%B4%9A%E4%B8%AD%E7%AD%89%E5%AD%B8%E6%A0%A1%E2%94%80%E6%95%B8%E5%AD%B8%E9%A0%98%E5%9F%9F.pdf
蔡保田(1987)。調查研究法在教育上的應用。載於中國教育協會,教育研究方法論
(頁1-29)。台北市:師大書苑。
國家教育研究院(編制)(無日期)。協力同行 解析實踐【投影片】。(取自國
家教育研究院,臺北市大安區和平東路一段179號)
數感實驗室(2017)。數感生活——聽到這樣的口號,代數表示...。2020 年3月
13日,取自https://www.facebook.com/numeracylab/posts/1450925288261826/
徐宗國(1997)。紮根理論研究法。載於胡幼慧主編,質性研究。臺北市:巨流。
徐偉民、徐于婷(2009)。國小數學教科書代數教材之內容分析: 台灣與香港之比
較。教育實踐與研究,22 (2),67-94。
二、英文文獻
Adam, G., & Eileen, C. H. (2000). Algebra for Everyone? Benefits of College-Preparatory Mathematics for Students With Diverse Abilities in Early Secondary School. Educational Evaluation and Policy Analysi,22(3), 241-254.
Al Jupri., Paul, D., & Marjavanden, H. P. (2014). Difficulties in initial algebra learning in Indonesia. Mathematics Education Research Group of Australasia, 26,683–710.doi:10.1007/s13394-013-0097-0
Arcavi, A., Drijvers, P., & Stacey, K. (2017). The learning and teaching of algebra: Ideas, insights, and activities. London, England: Routledge.
Blanton, M., Levi, L., Crites, T., Dougherty, B., Zbiek, R. M. (2011). Developing Essential Understanding of Algebraic Thinking for Teaching Mathematics in Grades 3-5. Series in Essential Understandings. (pp. 102). National Council of Teachers of Mathematics.
Blanton, M., Brizuela, B., Gardiner, A., Sawrey, K., & Newman-Owens, A. (2015). A learning trajectory in 6- year-olds’ thinking about generalizing functional relationships. Journal for Research in Mathematics Education, 46(5), 511–558.
Blanton, M., Brizuela, B., Gardiner, A., & Sawrey, K. (2017). A progression in first-grade children’s thinking about variable and variable notation in functional relationships. Educational Studies in Mathematics, 95(2), 181–202
Blanton, M., Brizuela, B., Stephens, A., Knuth, E., Isler, I., Gardiner, A., Stroud, R., Fonger, N., & Stylianou, D. (2018). Implementing a framework for early algebra. In C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds: The global evolution of an emerging field of research and practice (pp. 27– 49). Hamburg, Germany: Springer.
Blanton, M., Otalora Sevilla, Y., Brizuela, B., Gardiner, A., Sawrey, K., Gibbons, A., & Yangsook, K. (2018). Exploring kindergarten students’ early understandings of the equal sign. Mathematical Thinking and Learning, 20(3), 167–201
Blanton, M., Stroud, R., Stephens, A., Gardiner, A., Stylianou, D., Knuth, E., Isler, I., & Strachota, S. (2019). Does early algebra matter? The effectiveness of an early algebra intervention in grades 3–5. American Educational Research Journal.56,1930-1972. doi:10.3102/0002831219832301
Booth, L. (1984). Algebra: Children’s strategies and errors. Windsor, UK: NFER-Nelson
Carolyn Kieran(2004). Algebraic Thinking in the Early Grades: What Is It?The Mathematics Educator,8(1),139–151.
Carpenter,T.P.,Franke,M.L.,&Levi,L.(2003).Thinking mathematically:Integrating arithmetic and algebra in elementary school.Portsmouth:Heinemann.
Fonger, N. L., Stephens, A., Blanton, M., Isler, I., Knuth, E., & Gardiner, A. (2018). Developing a learning progression for curriculum, instruction, and student learning: An example from early algebra research. Cognition and Instruction, 36(1), 30–55. https://doi.org/10.1080/07370008.2017.1392965
Foster, R. (1994). Counting on Success in Simple Arithmetic Tasks. Proceedings of the 18th annual conference of the International Group for the Psychology of Mathematics Educatio, Lisbon, Portugal, II 360–367
Kaput, J. (2008). What is algebra? What is algebraic reasoning? In J. Kaput, D. W. Carraher & M. L. Blanton (Eds.), Algebra in the Early Grades (pp. 5-17). New York: Lawrence Erlbaum Associates/National Council of Teachers of Mathematics.
Kaput, J. (1998). Transforming algebra from an engine of inequity to an engine of mathematical power by “ algebrafying" the k-12 curriculum. In National Council of Teachers of Mathematics (Ed.), The nature and role of algebra in the k-14 curriculum (pp. 25-26) Washington, DC: National Academy Press
Kieran, C. (1992). The learning and teaching of school algebra.In D. A. Grouws(Ed),Handbook of research on mathematics teaching and learning (pp. 390-419). New York:Macmillan.
Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels Building meaning for symbols and their manipulation. In F. K. Lester(Ed), Second Handbook of research on mathematics teaching and learning (Vol. 2, pp. 707-762) Charlottee, NC: Information Age.
Kuchemann. (1981). Cognitive demand of secondary school mathematics items. Educational Studies in Mathematics, 12,301-316.
Linchevski, L,. & Livneh, D., (1999). Structure sense: The relationship between algebraic and numerical contexts. Educational Studies in Mathematics, 40, 173–196.
Liora, L.,& Nicolas, H.(1994). A Cognitive Gap Between Arithmetic And Algebra. Educational Studies in Mathematics , 27, 59-78.
Maria, B., Isil, I. -B., Rena, S., Ana, S., Eric, K., & Angela, M. G.(2019). Growth in children’s understanding of generalizing and representing mathematical structure and relationships. Educational Studies in Mathematics. 102,193–219.
Mary, E. B., Richard, E. M., Bryan, M., Theresa, B., Richard, D., Barbara, S. R., and David, W.(1997). Learning by Understanding: The Role of Multiple Representations in Learning Algebr. American Educational Research Journal , 34(4), 663-689.
Mason, J., Stephens, M., & Watson, A. (2009). Appreciating mathematics structure for all. Mathematics Education Research Journal, 21(2), 10–32
Moses, R. & Cobb, C. (2001). Radical equations: Math literacy and civil rights. Boston, MA:
Beacon Press.
National Research Council. (1998). The nature and role of algebra in the K-14
curriculum. Washington, DC: National Academies Press.
National Council of Teachers of Mathematics. (2000). Principles and standards for school
mathematics. Reston, VA: Author.
Sfard, A. (1991). On the dual nature of mathematical conceptions: Ref1ections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22. 1-36
Sfard, A., & Linchevski, L. (1994). The gains and the pitfalls of reification-The case of algebra. Educational Studies in Mathematics, 26. 191-228.
Smith, E. (2008). Representational Thinking as a Framework for Introducing Functions in the Elementary Curriculum. Algebra in the Early Grades. J. J. Kaput, Carraher, D. W., Blanton, M. L. New York, NY, Lawrence Erlbaum Associates.
Thomas P. Carpent., Linda Levi., Megan Loef Frankec & Julie Koehler Zeringue, N., (2005). Algebra in Elementary School: Developing Relational Thinking. Zentralblatt für Didaktik der Mathematik , 37, 53–59.
Thurston, W. P. (1990). Mathematical Education, Notices of the American Mathematical Society, 37 (7), 844–850.
Usiskin, Z. (1999). Conceptions of School Algebra and Uses of Variable. Algebra Thinking, grades
K~12, NCTM: Reston, Virginia