研究生: |
郭昆樺 Kun-Hua Kuo |
---|---|
論文名稱: |
氧化鋅奈米柱之成核成長及其發光特性研究 Nucleation and Growth of ZnO Nanorods and the Optical Properties |
指導教授: |
彭宗平
Tsong-Pyng Perng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 115 |
中文關鍵詞: | 氧化鋅 、奈米線 、奈米柱 、化學氣相沉積 、碳熱還原 、氣液固法 、氧化鋁 、奈米球微影 、週期陣列 、光激發光 、紫外光 、綠光 |
外文關鍵詞: | ZnO, nanowires, nanorods, CVD, carbothermal reduction, VLS, sapphire, NSL, periodic arrays, PL, UV emission, green emission |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係以管狀高溫爐利用化學氣相沉積製程來合成氧化鋅奈米線及奈米柱。氧化鋅奈米線經由氣液固(vapor-liquid-solid, VLS)之機制,利用石墨粉末在高溫下將氧化鋅粉末還原出鋅蒸氣,蒸氣熔入金奈米顆粒觸媒後,再從基板上長出氧化鋅奈米線。不同晶面的矽基板與氧化鋁基板被選用來控制氧化鋅奈米柱的成長方向。
其次,利用奈米球微影技術在基板上製作金奈米顆粒陣列,藉此可定義出氧化鋅奈米柱的成長位置,並達到成長奈米柱陣列的目標。以奈米球微影技術製備出來的金奈米顆粒大小約在50-100 nm。經由氧化鋅奈米柱成核成長的顯微觀察,發現金顆粒觸媒在成核階段中因合金薄膜的形成而改變了位置。
在材料分析方面,本研究利用能量散佈光譜儀(energy dispersive X-ray spectrometer, EDX)來分析氧化鋅奈米線以及製程初期的產物,並利用X光繞射儀和高解析度穿透式電子顯微鏡來鑑定奈米線的成長方向。
在不同成長溫度與成長時間下所製備出的氧化鋅奈米線擁有不同的密度和長度。這些奈米線的光激發光譜顯示,紫外光的發光強度隨著氧化線的密度增加而增加,而另一方面,綠光的發光強度也隨著氧化線長度的增加而大幅提升。
ZnO nanowires and nanorods were synthesized via a CVD process in a horizontal tube furnace. This process was initiated from the carbothermal reduction of ZnO by graphite powder. Then ZnO nanowires were grown on substrates via the vapor-liquid-solid (VLS) process. Both (100) silicon and a-plane sapphire were used as a substrate to control the growth orientation of ZnO nanorods.
Nanosphere lithography (NSL) and the VLS growth process of ZnO nanorods were combined to fabricate periodic arrays of ZnO nanorod on the substrate. Periodic array of Au particles with a size of 50-100 nm were deposited on the substrate by NSL technique. ZnO nanorods were then grown on the arrays via the VLS process. Microscopic observation on the nucleation and growth of ZnO nanorods grown from the a-plane sapphire substrate was made. Distortion of Au particle arrays and formation of alloy thin film were noticed during the nucleation stage. The compositions of the alloy thin film and the as-prepared ZnO nanowires were identified by the EDX spectra. The crystallinity and growth orientation of the ZnO nanowires were characterized by X-ray diffraction and HRTEM analysis.
Photoluminescence (PL) spectra of ZnO nanowires grown at different temperatures were obtained. It reveals that the intensity of UV emission of the specimens largely depends on the density of nanorods. Also, it is demonstrated that the intensity of green emission is significantly influenced by the length of nanowires, presumably related to the defect density in the nanowires.
1. X. Wang, C. J. Summers, and Z. L. Wang, Nano Lett. 4, 423 (2004).
2. N. E. Hsu, W. K. Hung, and Y. F. Chen, J. Appl. Phys. 96, 4671 (2004).
3. P. Yang, Science 292, 1897 (2001).
4. Q. H. Li, Q. Wan, Y. X. Liang, and T. H. Wang, Appl. Phys. Lett. 84, 4556 (2004).
5. Q. Wan, Q. H. Li, Y. J. Chen, and T. H. Wang, Appl. Phys. Lett. 84, 3654 (2004).
6. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. 14, 158 (2002).
7. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
8. B. D. Yao, Y. F. Chan, and N. Yang, Appl. Phys. Lett. 81, 757 (2002).
9. J. J. Wu and S. C. Liu, Adv. Mater. 14, 215 (2002).
10. W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, Appl. Phys. Lett. 80, 4232 (2002).
11. Y. Sun, G. M. Fuge, and M. N. R. Ashfold, Chem. Phys. Lett. 396, 21 (2004).
12. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, and J. A. Voigt, J. Appl. Phys. 79, 7983 (1996).
13. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Adv. Mater. 13, 113 (2001).
14. H. T. Ng, Appl. Phys. Lett. 82, 2023 (2003).
15. Q. Wan, C. L. Lin, X. B. Yu, and T. H. Wang, Appl. Phys. Lett. 84, 124 (2004).
16. S. Y. Bae, H. W. Seo, and J. Park, J. Phys. Chem. B 108, 5206 (2004).
17. Z. F. Ren, Appl. Phys. Lett. 82, 460 (2003).
18. T. Mårtensson, M. Borgstrom, W. Seifert, B. J. Ohlsson, and L. Samuelson, Nanotech. 14, 1255 (2003).
19. M. Kamp, M. Emmerling, S. Kuhn, and A. Forchel, J. Vac. Sci. Technol. B 17, 86 (1999).
20. L. J. Heyderman, Appl. Phys. Lett. 85, 4989 (2004).
21. S. Juhl and S. F. Lyuksyutov, Appl. Phys. Lett. 85, 3836 (2004).
22. J. Rybczynski, U. Ebels, and M. Giersig, Colloids Surf. A: Physicochem. Eng. 219, 1 (2003).
23. W. Kern, Handbook of Semiconductor Wafer Cleaning Technology -Science, Technology, and Application, Noyes Publications, Park Ridge, N. J. (1993).
24. D. I. Kim, H. S. Ahn and D. H. Choi, Appl. Phys. Lett. 84, 1919 (2004).
25. R. Micheletto, H. Fukuda, and M. Ohtsu, Langmuir 11, 3333 (1995).
26. J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).
27. J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, J. Phys. Chem. B 103, 3854 (1999).
28. M. Winzer, M. Kleiber, N. Dix, and R. Wiesendanger, Appl. Phys. A 63, 617 (1996).
29. A. S. Dimitrov and K. Nagayama, Langmuir 12, 1303 (1996).
30. C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001).
31. M. K. Sunkara, Appl. Phys. Lett. 79, 1546 (2001).
32. Y. Wu and P. Yang, Chem. Mater. 12, 605 (2000).
33. C. Y. Zhi, X. D. Bai, and E. G. Wang, Appl. Phys. Lett. 86, 213108 (2005).
34. S. K. Lee, Phys. Stat. Sol. (b) 241. 2775 (2004).
35. X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun, and J. J. Du, Chem. Phys. Lett. 336, 53 (2001).
36. Y. Lei, Appl. Phys. Lett. 78, 1125 (2001).
37. Y. Chen, J. Li, Y. Han, X. Yang, and J. Dai, J. Cryst. Growth 245, 163 (2002).
38. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, Chem. Phys. Lett. 299, 237 (1999).
39. N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 73, 3902 (1998).
40. L. D. Zhang, Adv. Mater. 13, 1238 (2001).
41. J. Jie, G. Wang, Q. Wang, Y. Chen, X. Han, X. Wang, and J. G. Hou, J. Phys. Chem. B 108, 11976 (2004).
42. Y. Zhang and H. Dai, Appl. Phys. Lett. 77, 3015 (2000).
43. Y. K. Rao, Stoichiometry and Thermodynamics of Metallurgical Processes, Cambridge University Press, New York (1985).
44. H. K. Chen, Scand. J. Metall. 30, 292 (2001).
45. H. K. Chen, J. Mater. Sci. Lett. 19, 1297 (2000).
46. J. B. Baxter and E. S. Aydil, J. Cryst. Growth 274, 407 (2005).
47. P. Yang, Adv. Funct. Mater. 12, 323 (2002).
48. J. Song, X. Wang, E. Riedo, and Z. L. Wang, J. Phys. Chem. B 109, 9869 (2005).
49. H. J. Fan, Superlattice Microstruct. 36, 95 (2004).
50. Y. R. Lin, Cryst. Growth & Design 5, 579 (2005).
51. Y. K. Tseng, Adv. Funct. Mater. 13, 811 (2003).
52. X. Liu, X. Wu, H. Cao, and R. P. H. Chang, J. Appl. Phys. 95, 3141 (2004).
53. H. Okamoto and T. B. Massalski, Phase diagrams of binary gold alloys, ASM International, Metals Park, Ohio (1987)