研究生: |
黃柏倫 Huang, Bor-Luen |
---|---|
論文名稱: |
Midgap States in Low Dimensions |
指導教授: |
牟中瑜
Mou, Chung-Yu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 92 |
中文關鍵詞: | 中間能階態 、超對稱量子力學 、邊界累積電荷 、二維炭層 、磁性 、缺陷波函數 、邊界態 |
外文關鍵詞: | midgap state, SUSY QM, accumulated charge, graphene, magnetism, impurity wavefunction, edge state |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Midgap states induced by edges or by vacancies in low dimensions are examined. For semi-infinite nanowires in tight-binding limit, edge states are found within the gaps of corresponding bulk spectrum. The presence of these midgap states reflects an underlying generalized supersymmetry. This supersymmetric structure is a generalized rotational symmetry among sublattices and results in a universal tendency: all midgap states tend to vanish with periods commensurate with the underlying lattice. A few implications are also discussed. At the same time, the fractional charges could be found from edges. This anomalous accumulated charges could be understood as the remnant charge from an unit cell masked by the edge effect. By the generalized supersymmetric method and the combination rules used in the content, some relations between the accumulated charges for different edges have been found. For a modern research about the defect, we come to study the magnetism in graphene. Through Lippmann-Schwinger equation of scattering theory, we could write down the localized wavefunctions for the defect states on graphene. By calculating the Coulomb and exchange energies of two defects, it shows that the spin orientations is depending on the separating distance. We also use the random matrix theory to estimate the magnetization of the graphene with impurities. The density of state is characterized by Wigner semi-circle law. The formed impurity band supports ferromagnetism with induced magnetic moment depending on quasi-particle lifetime and defect density.
[1] Saion Sinha and K.-W. Ng, Phys. Rev. Lett. 80, 1296 (1998).
[2] P. W. Brouwer, et. al. Phys. Rev. B 66, 014204 (2002).
[3] Chia-Ren Hu, Phys. Rev. Lett. 72, 1526 (1994).
[4] I. M. Lifshits, S. A. Grdedskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (John Wiley & Sons, Inc. 1988).
[5] Bor-Luen Huang, Shin-Tza Wu, and Chung-Yu Mou, Phys. Rev. B 70, 205408 (2004).
[6] See for instance, Joachim and Roth, Atomic and Molecular
Wires (Kluwer Academic Publishers, Boston,1997), and more recently, N. Nilius, T. M. Wallis, and W. Ho, Science 297, 1853 (2002).
[7] Xiao-Gang Wen, Advences in Physics 44, 405 (1995).
[8] S. T. Wu and C. -Y. Mou, Phys. Rev. B 66, 012512 (2002); 67, 024503 (2003); Physica C 388-389, 45 (2003).
[9] For externally-introduced cases, see, for example, Y. Meir, N. S. Wingreen, and P. A. Lee, Phy. Rev. Lett. 70, 2601(1993); Cronenwett et al., Science 281, 540 (1998).
[10] Y. Shibayama, H. Sato, T. Enoki, and M. Endo, Phys. Rev. Lett. 84, 1744 (2000).
[11] T. Hikihara, X. Hu, H. H. Lin and C.-Y. Mou, Phys. Rev. B 68, 035432 (2003).
[12] See for example, K. Efetov, Supersymmetry in Disorder and Choas (Cambridge Univ Press, 1999).
[13] See for example, G. Junker, Supersymmetric Methods in Quantum and Statistical Physics (Springer, New York, 1996).
[14] I. Kosztin, S. Kos, M. Stone, and A. J. Leggett, Phys. Rev. B 58, 9365 (1998); I. Adagideli, P. M. Goldbart, A. Shnirman, and A. Yazdani, Phys. Rev. Lett. 83, 5571 (1999).
[15] See, for instance, S. Durand, Phys. Lett. B312, 115(1993). Another generalization that is often discussed is the parasupersymmetry. See, for example, K. Samani and A. Mostafazadeh, Nucl. Phys. B 595, 467 (2001), and reference therein.
[16] See, for example, R. H. McKenzie, Phys. Rev. Lett. 77, 4804 (1996); L. Balents and M. P. A. Fisher, Phys. Rev. B 56, 12970 (1997), and references therein.
[17] F. J. Dyson, Phys. Rev. 92, 1331 (1953).
[18] See, for example, H. W. Cheng and C. C. Chi, J. Low. Temp. Phys. 131, 477 (2003).
[19] Philip W. Anderson, Physics Today, October, 42 (1997).
[20] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979). W. P. Su, J. R. Schrieffer, Phys. Rev. Lett. 46, 738 (1981).
[21] Frank Wilczek, cond-mat/0206122.
[22] Juha Javanainen and Janne Ruostekoski, Phys. Rev. Lett. 91, 150404-1 (2003).
[23] J. Martin, et. al., Nature Physics 4, 144 (2008).
[24] Xiaosong Wu, et. al., Phys. Rev. Lett. 98, 136801 (2007).
[25] S. Y. Morozov, et. al., Phys. Rev. Lett. 97, 016801 (2006).
[26] P. Esquinazi, D. Spemann, R. Hohne, A. Setzer, K.-H. Han, and T. Butz, Phys.
Rev. Lett. 99, 227201 (2003).
[27] J. Barzola-Quiquia, P. Esquinazi, M. Rothermel, D. Spemann, R. Butz, and N. Garcia, Phys. Rev. B 76, 161403 (2007).
[28] A. K. Geim and K. S. Novoselov, Nature Materials 6, 183 (2007).
[29] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
[30] Y. Kobayashi, et. al., Phys. Rev. B 71, 193406 (2005).
[31] M. A. H. Vozmediano, et. al., Phys. Rev. B 72, 125408 (2005).
[32] O. V. Yazyev and L. Helm, Phys. Rev. B 75, 125408 (2007).
[33] O. V. Yazyev, cond-mat.mtrl-sci, 0802.1735v2.
[34] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
[35] A. Hashimoto, et. al., Nature 430, 870 (2004).
[36] Vitor M. Pereira, F. Guinea, J.M.B. Lopes dos Santos, N.M.R. Peres, and A.H. Castro Neto, Phys. Rev. Lett. 96, 036801 (2006).
[37] W. P. Su, J. R. Schrie®er, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).
[38] W. P. Su and J. R. Schrie®er, Phys. Rev. Lett. 46, 738 (1981).
[39] Wen-Min Huang and Hsiu-Hau Lin, Phys. Rev. B 78, 224522 (2008).
[40] The construction of HS essentially used the Hamilton-Cayley theorem often quoted in elementary linear algebra. Here for the purpose of reference, we list some of its forms: p = 3: H_S = Hp^3-(t1^2+t2^2+t3^2)Hp; p = 4: H_S = Hp^4-(t1^2 + t2^2 + t3^2 +t4^2)Hp^2 + t2^2 t4^2 + t1^2 t3^2. Clearly, for higher p, it involves higher powers of Hp.
[41] Because \phi_p is an eigenstate to H^- with eigenvalue E_S and H^- is a uniform hopping model, \phi_p is either in the form of sin(npka) or simply zero. Since \phi_p = sin(npka) is an extended state, the only possibility for accommodating the midgap states is \phi_p = 0. Therefore, \phi_p = 0 and the following construction exhaust all possibilities.
[42] his is equivalent to find the number of midgap states.
Using $\mathbf{H}^{+}$ and $\mathbf{H}^{-}$, the number of midgap states can be formally counted. For instance, if one defines the index as $\mathrm{ind}(z)\equiv \mathrm{Tr}\left( \frac{z}{z+\mathbf{H}^{+}}-\frac{z}{ z+\mathbf{H}^{-}}\right) +\mathrm{Tr}\left( \frac{\mathbf{H}^{+}}{z+\mathbf{H }^{+}}-\frac{\mathbf{H}^{-}}{z+\mathbf{H}^{-}}\right) $,
$\mathrm{ind}(0)$ gives the number of midgap states.
[43] For non-disordered carbon nanotubes, resonant states have been observed in P. Kim, T. W. Odom, J.-L. Huang, and C. M. Lieber, Phys. Rev. Lett. 82, 1225 (1999).
[44] T. Heinzel, Mesoscopic Electronics in Solid State Nanostructures (Wiley-VCH, 2003), Chapter 3.
[45] P. W. Anderson, Concepts in solids : lectures on the theory of solids, World Scien-ti‾c, 1997.
[46] Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
[47] G. D. Mahan, Many-Particle Physics (2nd Edition, Plenum Press, New York, 1990), Sections 1.4B and 4.2.
[48] Saeed Saremi, Phys. Rev. B 76, 184430 (2007).
[49] De-Hone Lin, Phys. Rev. A 73, 044701 (2006).
[50] Patrik Fazekas, Lecture Notes on Electron Correlation and Magnetism, World Sci-enti‾c Publishing Co. Pte. Ltd., 1999.
[51] Joaquin E. Drut and Timo A. LÄahde, Phys. Rev. Lett. 102, 026802 (2009).
[52] The hopping amplitude is about 2.7eV on graphene. Because the lattice constant $a=2.456{\AA}$, we find that $U_0=\frac{e^2}{4\pi\epsilon_0 a}\approx 5.86eV$, which gives the bare $\alpha\approx 2.17$.
[53] N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B 72, 174406 (2005).
[54] Madan Lal Mehta, Random Matrices, Rev. and enl 2nd
[55] A. Mielke and H. Tasaki, Commun. Math. Phys. 158, 341 (1993).