研究生: |
高肇甫 Kao, Chao-Fu |
---|---|
論文名稱: |
簡化模型預估肺部腫瘤劑量在硼中子捕獲治療的發展與應用 Development and Application of a Simplified Model for the Estimation of Lung Tumor Dose in BNCT |
指導教授: |
許榮鈞
Sheu, Rong-Jiun 李家誠 Lee, Jia-Cheng |
口試委員: |
陳一瑋
Chen, Yi-Wei 裴晉哲 Peir, Jinn-Jer |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 硼中子捕獲 、簡化模型 、肺部腫瘤劑量預估 、治療計劃 |
外文關鍵詞: | Boron Neutron Capture Therapy, Simplified model, Lung tumor dose estimation, Treatment planning |
相關次數: | 點閱:39 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討硼中子捕獲治療(BNCT)的發展與應用,特別著重於設計一套簡化模型,並且建立GUI以預估腫瘤治療劑量。其目的是提供臨床醫師在治療計劃上,一項迅速且準確的腫瘤劑量估算工具。近十年來,全球及國內肺癌的發生率與死亡率逐年攀升,臨床上肺癌患者主要接受放射線治療、手術治療及化學治療。鑑於此情況,本研究專注於探討肺癌患者在BNCT治療中的劑量預估,同時也是國內外較少深入研究的領域之一。
本研究首先模擬了多種參數(包括腫瘤直徑大小、腫瘤位置深度、病人的胸壁厚度、準直儀直徑大小、準直儀長度,以及T/N ratio)對肺部腫瘤劑量的影響,並使用TH-BNCTplan治療計劃模擬程式進行實驗和計算。透過觀察多組實驗數據趨勢結果,並分析各參數分別對肺部腫瘤劑量的影響,最後建立了一組簡化模型預估劑量方程式,以預測BNCT中肺部腫瘤的治療劑量。
此外,本研究利用簡化模型對36位接受光子治療的肺部腫瘤病人,進行腫瘤治療劑量的模擬預估,實驗結果顯示簡化模型在劑量預估上具有高準確度,並能夠進一步證明BNCT對肺癌患者的可行性。研究最後定義一個新的分析值Surface-to-Tumor center Distance (STcD),在肺部腫瘤病人進行BNCT前,建議STcD應小於6.66公分具有較好的腫瘤劑量分布,同時作為一項臨床醫師篩選患者是否進行BNCT的指標。
最後,本研究期望簡化模型能在未來臨床應用中,作為BNCT肺部腫瘤治療計劃上的處方劑量參考,並協助醫師有效制定治療計劃,確保整體治療流程更具效益。
This study primarily explores the development and application of Boron Neutron Capture Therapy (BNCT), with a particular focus on designing a simplified model to estimate tumor treatment dose. The aim is to provide clinicians with a rapid and accurate tool for estimating tumor dose in treatment planning. Over the past decade, the incidence and mortality rates of lung cancer have been rising both globally and domestically. Clinically, lung cancer patients primarily undergo radiation therapy, surgery, and chemotherapy. Given this situation, this study concentrates on dose estimation for lung cancer patients undergoing BNCT, a relatively understudied topic both domestically and internationally.
Initially, this study simulates the impact of various parameters, including tumor diameter, tumor depth, patient's chest wall thickness, collimator diameter, collimator length, and T/N ratio on lung tumor dose. Experiments and calculations are conducted using the TH-BNCTplan simulation program. By observing trends across multiple sets of experimental data, the study analyzes the individual effects of each parameter on lung tumor dose. The final outcome of these experiments is the establishment of a simplified model for predicting the treatment dose of lung tumors in BNCT.
Additionally, the study uses the simplified model to simulate and estimate tumor treatment doses for 36 lung cancer patients who have undergone photon therapy. The experimental results demonstrate that the simplified model exhibits high accuracy in dose estimation and further elucidate the feasibility of BNCT for lung cancer patients. The study introduces a new analytical value, the Surface-to-Tumor Center Distance (STcD), suggesting that an STcD of less than 6.66 cm is associated with better tumor dose distribution. This metric serves as a guideline for clinicians in selecting patients for BNCT.
In conclusion, this study aspires for the simplified model to be used in future clinical applications as a reference for prescribing doses in BNCT lung tumor treatment plans. This model aims to assist clinicians in effectively formulating treatment plans, ensuring more efficient and beneficial treatment processes overall.
1. Erridge, S. C., Seppenwoolde, Y., Muller, S. H., van Herk, M., De Jaeger, K., Belderbos, J. S., Boersma, L. J., & Lebesque, J. V. (2003). Portal imaging to assess set-up errors, tumor motion and tumor shrinkage during conformal radiotherapy of non-small cell lung cancer. Radiother Oncol, 66(1), 75-85. https://doi.org/10.1016/s0167-8140(02)00287-6
2. Ettinger, D. S., Wood, D. E., Aisner, D. L., Akerley, W., Bauman, J. R., Bharat, A., Bruno, D. S., Chang, J. Y., Chirieac, L. R., DeCamp, M., Dilling, T. J., Dowell, J., Durm, G. A., Gettinger, S., Grotz, T. E., Gubens, M. A., Hegde, A., Lackner, R. P., Lanuti, M., . . . Hughes, M. (2023). NCCN Guidelines® Insights: Non-Small Cell Lung Cancer, Version 2.2023. J Natl Compr Canc Netw, 21(4), 340-350. https://doi.org/10.6004/jnccn.2023.0020
3. Farías, R. O., Bortolussi, S., Menéndez, P. R., & González, S. J. (2014). Exploring Boron Neutron Capture Therapy for non-small cell lung cancer. Phys Med, 30(8), 888-897. https://doi.org/10.1016/j.ejmp.2014.07.342
4. Huang, Y. S., Peir, J. J., Wu, C. J., Wang, M. Y., Chen, Y. W., Lee, J. C., & Chou, F. I. (2023). NeuTHOR Station-A Novel Integrated Platform for Monitoring BNCT Clinical Treatment, Animal and Cell Irradiation Study at THOR. Life (Basel), 13(3). https://doi.org/10.3390/life13030800
5. Kato, I., Ono, K., Sakurai, Y., Ohmae, M., Maruhashi, A., Imahori, Y., Kirihata, M., Nakazawa, M., & Yura, Y. (2004). Effectiveness of BNCT for recurrent head and neck malignancies. Appl Radiat Isot, 61(5), 1069-1073. https://doi.org/10.1016/j.apradiso.2004.05.059
6. Peterson, J., Niles, C., Patel, A., Boujaoude, Z., Abouzgheib, W., Goldsmith, B., Asbell, S., Xu, Q., Khrizman, P., & Kubicek, G. J. (2017). Stereotactic Body Radiotherapy for Large (> 5 cm) Non-Small-Cell Lung Cancer. Clin Lung Cancer, 18(4), 396-400. https://doi.org/10.1016/j.cllc.2016.11.020
7. Radiation Dose in Radiotherapy from Prescription to Delivery. (1996). INTERNATIONAL ATOMIC ENERGY AGENCY. https://www.iaea.org/publications/5545/radiation-dose-in-radiotherapy-from-prescription-to-delivery
8. Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2022). Cancer statistics, 2022. CA Cancer J Clin, 72(1), 7-33. https://doi.org/10.3322/caac.21708
9. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 71(3), 209-249. https://doi.org/10.3322/caac.21660
10. Suzuki, M., Suzuki, O., Sakurai, Y., Tanaka, H., Kondo, N., Kinashi, Y., Masunaga, S.-i., Maruhashi, A., & Ono, K. (2012). Reirradiation for locally recurrent lung cancer in the chest wall with boron neutron capture therapy (BNCT). International Cancer Conference Journal, 1, 235-238. https://doi.org/10.1007/s13691-012-0048-8
11. Thwaites, D. (2013). Accuracy required and achievable in radiotherapy dosimetry: Have modern technology and techniques changed our views? Journal of Physics Conference Series, 444, 2006. https://doi.org/10.1088/1742-6596/444/1/012006
12. Wang, L. W., Chen, Y. W., Ho, C. Y., Hsueh Liu, Y. W., Chou, F. I., Liu, Y. H., Liu, H. M., Peir, J. J., Jiang, S. H., Chang, C. W., Liu, C. S., Lin, K. H., Wang, S. J., Chu, P. Y., Lo, W. L., Kao, S. Y., & Yen, S. H. (2016). Fractionated Boron Neutron Capture Therapy in Locally Recurrent Head and Neck Cancer: A Prospective Phase I/II Trial. Int J Radiat Oncol Biol Phys, 95(1), 396-403. https://doi.org/10.1016/j.ijrobp.2016.02.028
13. Wu, S., Geng, C., Tang, X., Bortolussi, S., Han, Y., Shu, D., Gong, C., Zhang, X., & Tian, F. (2020). Dosimetric impact of respiratory motion during boron neutron capture therapy for lung cancer. Radiation Physics and Chemistry, 168, 108527. https://doi.org/https://doi.org/10.1016/j.radphyschem.2019.108527
10