研究生: |
鄭清輝 Ching-Huei Zheng |
---|---|
論文名稱: |
應用於HomePlug AV的基頻數位信號處理器 A Baseband Digital Signal Processor for HomePlug AV Applications |
指導教授: |
馬席彬
Hsi-Pin Ma |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 107 |
中文關鍵詞: | 電力線傳輸 、分離複頻調變 、正交分頻多工調變 、取樣頻率漂移 |
外文關鍵詞: | Powerline communication, DMT, OFDM, Sample frequency offset, HomePlug AV (HPAV) |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,標準規格的研習,函數的模擬,架構設計和電路設計,以及應用於HomePlug AV(HPAV)的基頻通訊系統並且實現於場效式可程式閘陣列(FPGA)將被提出。
HPAV是電力線通訊系統的一個標準,在這篇論文中將提出一個遵守HPAV標準的基頻通訊系統。一個包含傳輸端、通道模型、接收端的基頻通訊實體電路層(PHY layer)將被模擬並實現。分離複頻調變(DMT)被使用在這個基頻通訊系統中,這種調變技術是一種為了有線通訊的正交分頻多工調變(OFDM)技術。根據HPAV標準,採用的一個非2次冪的3072點的快速傅利葉轉換(FFT)處理器架構,質因數演算法將被使用在實現這個快速傅利葉轉換(FFT)處理器架構。在HPAV標準裡,映射(mapping)是高階的(1024-QAM),同步碼(preamble)的設計符合HPAV標準的要求並且提供接收端足夠的訊息。為了驗證被提出的設計,在[1]的通道模型被使用,這些通道效應包含了雜訊、干擾、多重路徑效應和取樣頻率漂移。
這個電路設計場效式可程式閘陣列(FPGA)中被實現並做驗證,信號產生器 (PG)被使用來製造輸入信號而邏輯分析儀(LA)是被使用來做輸出信號的分析。
In this thesis, standard specification study, functional simulation, architecture design and circuit design along with FPGA implementation of a baseband communication system for HomePlug AV (HPAV) applications is presented.
HPAV is a standard for the powerline communication system. A baseband communication system depending on HPAV standard is proposed in this thesis. A physical layer (PHY)of basedband communication system including transmitter, channel model, and receiver is simulated and implement. Discrete multitone modulation (DMT) is used in the baseband communication. This modulation is one kind of OFDM system for wire communications. According to HPAV standard, the 3072-point FFT processing architecture is adopt and it is not the power of two. The prime-factor algorithm (PFA) is used to implement the FFT processing architecture. The mapper is high order (1024-QAM) in HPAV standard. The structure of the preamble symbol matches the request of HPAV standard and supports enough information to receiver. In order to verify the proposed design, the channel model is used in [1]. The channel effect includes Noise, disturbances, multipath effect and, sample frequency offset(SFO).
The circuit design is implemented and verified by FPGA emulation. The pattern generator (PG) is used for input pattern generating and the logic analyzer (LA) is used
for output analysis.
[1] M. Zimmermann and K. Dostert, ”A Multipath Model for the Powerline Channel,”IEEE Transactions on communications, vol. 50, Issue 4, pp. 553-559, Apr. 2002.
[2] H. C. Ferreira, H. M. Grove, O. Hooijen, and A. J. Han Vinck, ”Power Line Communications: An Overview,” in Proc. IEEE AFRICON, 1996, vol. 2, pp. 558-563.
[3] R. M. Vines, H. J. Trussell, K. S. Shuey, and J. B. O’Neal, ”Noise on Residential Power Distribution Circuits,” IEEE Transactions on Electromagnetic Compatability, vol. EMC-26, pp. 161-168, Nov. 1984.
[4] R. M. Vines, H. J. Trussell, K. S. Shuey, and J. B. O’Neal, ”Impedance of the Residential Power-Distribution Circuit,” IEEE Transactions on Electromagnetic Compatibility, vol. EMC-27, pp. 6-12, Feb. 1985.
[5] J. A. Malack and J. R. Engstrom, ”RF Impedance of United States and European Power Lines,” IEEE Transactions on Electromagnetic Compatibility, vol. EMC-18, no. I, pp. 36-38, Feb. 1976.
[6] L. Schaap, ”The ROBCOM System,” in Proc. of the workshop on communications over power lines, 1994, Part V.
[7] HomePlug Powerline Alliance. [Online]. Available: http://www.homeplug.org [February 10, 2005]
[8] J. P. Lauer and J. M. Cioffi, ”Turbo Coding for Discrete Multitone Transmission Systems,” in Proc. Global Telecommunications Conference, 1998, vol. 1, pp. 3256-3260.
[9] J. G. Proakis, Digital Communications, 4th ed. New York: McGraw-Hill, 2001.
[10] H. F. Chi and Z. H. Lai, ”A Cost-Effective Memory-Based Real-Valued FFT and Hermitian Symmetric IFFT Processor for DMT-based Wire-Line Transmission Systems,” in Proc. IEEE International Symposium on Circuits and Systems, 2005, vol.6, pp. 6006-6009.
[11] S. Bouguezel, M. O. Ahmad and, M. N. S. Swamy, ”Arithmetic Complexity of the Split-Radix FFT Algorithms,” in Proc. International Acoustics, Speech, and Signal
Processing Conference, 2005, vol. 5, pp. 137-140.
[12] S. Baig and N. D. Gohar, ”Discrete Multi-Tone (DMT) Transceiver with Dynamic Rate Adaptive Water-Filling Bit-Loading Technique for In-Home Power Line Communication Networks,” in Proc. IEEE International Multi Topic Conference, 2003, vol. 1, pp. 84-890.
[13] K. H. Afkhamie, S. Katar, and L. Yonge, ”An Overview of the Upcoming HomePlug AV Standard,” in Proc. International Symposium on Power Line Communications and Its Applications, 2005, pp. 400-404.
[14] B. Mashburn, H. Latchman, T. VanderMey, L. Yonge and, K. Tripathi, ”Signal Processing Challenges in the Design of the HomePlug AV Powerline Standard to Ensure Co-Existence with Homeplug 1.0.1,” in Proc. IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, 2005, pp. 1001-1005.
[15] M. liskovic and B. Jeren, ”Clock Frequency Synchronisation in OFDM System for Power Line Communications,” in Proc. of the First International Workshop on Image and Signal Processing and Analysis, 2000, pp.241-246.
[16] S. Aghajeri and H. Shafiee, ”Synchronization in OFDM Powerline Communication Systems in Presence of Narrowband Interferences,” in Proc. Seventh International Symposium on Processing and Its Applications, 2003, vol. 2 pp. 359-362.
[17] S. Haykin, Communication Systems, 4th ed. Wiley and Sons, 2001.