簡易檢索 / 詳目顯示

研究生: 孫彰佑
Sun, Chang-Yu
論文名稱: 鱷魚骨板之啟發:防禦性生物複合材料之多尺度結構分析及機械性質研究
Multi-scale Structural Characterization and Mechanical Evaluation of Protective Bio-composites: Inspirations from Alligator Osteoderms
指導教授: 陳柏宇
Chen, Po-Yu
口試委員: 杜正恭
Duh, Jenq-Gong
李志偉
Lee, Jyh-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 140
中文關鍵詞: 骨板盔甲複合結構機械性質韌化機制仿生材料
外文關鍵詞: osteoderm, armor, composites, mechanical property, toughening mechanisms, bio-inspired materials
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鱷魚是一種適應力強的活化石,演化出天擇優化後的骨甲。此骨甲由各自獨立的骨板所構成,骨板與骨板間以鋸齒狀的邊緣相互扣鎖,並由非礦化的膠原蛋白纖維連結,在提升防禦能力的同時兼顧可撓曲性。鱷魚骨板內部為複合夾層構造,由多孔性的內部和較緻密的外層共同組成,兼具抗彎剛度及能量吸收能力。此研究從材料科學觀點出發,探討美洲短吻鱷骨板在多尺度下的結構與其機械性能。X光斷層掃描影像顯示骨板內部的神經血管系統,形成複雜的三維孔洞結構。透過光學顯微鏡和掃描式電子顯微鏡的觀測可得知,骨板是由位於上半部的編織骨和底部的層狀骨所複合而成。利用奈米壓痕量測系統可測得骨板局部位置的硬度與彈性係數,巨觀的機械性質則由壓縮試驗獲得。結果顯示,骨板是一種非均質材料,在不同區域具有不同的礦物質含量及多孔性,外層較硬且較緻密的編織骨以漸次變化與底部較韌的層狀骨進行結合,形成獨特的功能梯度複合材料。本研究提出並印證三種鱷魚骨板的防禦機制:一、鋸齒狀邊緣扣鎖和非礦化的膠原蛋白纖維提供適量可撓曲性;二、多孔性的內部構造能吸收能量,使外殼不易碎裂;三、非均勻分布的微結構和機械性質則有助於外力之再分配並提升抗衝擊之能力。鱷魚骨板的最佳化結構和機械性能可望提供新型盔甲和先進複合材料設計與製造之靈感。


    Alligator is a well-adapted living fossil covered with a dorsal armor. This dermal shield consists of bony plates, called osteoderms, interconnected by sutures and non-mineralized collagen fibers, providing a dual function of protection and flexibility. Osteoderm features a sandwich structure, combining an inner porous core and an outer dense cortex, to offer enhancements for bending stiffness and energy absorbance. In this study, hierarchical structure and mechanical behaviors of the American alligator (Alligator mississippiensis) osteoderm were investigated. Micro-computed tomography was applied to reveal the complex 3-dimesional neurovascular network. Through the observation under optical and scanning electron microscopes, the osteoderm was found to consist of woven bone in the dorsal region and lamellar-zonal bone in ventral region. Nanoindentation and compressive tests were performed to evaluate the mechanical properties of osteoderms. The varying mineral contents and porosity resulted in a graded mechanical property: from a hard and stiff dorsal cortex gradually transform to a more compliant ventral base. Three protective mechanisms were proposed and observed for alligator osteoderms: (1) flexibility provided by sutures and non-mineralized collagen fibers; (2) energy absorption under compression contributed from the interior cellular foams; (3) non-uniform microstructure and graded mechanical properties offer load re-distribution and impact resistance. The inspirations from alligator osteoderms may lead to the optimized design of novel synthetic armors and advanced composites.

    Contents List of Tables V Figure Caption VI Chapter I Introduction 1 1.1 Background 1 1.2 Motivations and Goals 4 Chapter II Literature Review 7 2.1 Biological Materials 7 2.1.1 Overview 7 2.1.2 Basic Building Blocks of Biological Materials 11 2.1.3 Cellular Solids 16 2.1.4 Sandwich-structured Composite 18 2.2 Bone 18 2.2.1 Hierarchical Structure 19 2.2.2 Mechanical Behavior 19 2.3 Natural Armors 21 2.3.1 Inflexible Protective Shields 21 2.3.2 Flexible Dermal Armors 24 Chapter III Experimental Procedure 57 3.1 Sample Preparation and Treatment 57 3.2 Compositional Analysis 58 3.2.1 Ash Content Measurement 58 3.2.2 X-ray Diffraction 58 3.2.3 Electron Probe Microanalysis 59 3.2.4 Energy-Dispersive Spectroscopy 59 3.3 Structural Characterization 60 3.3.1 Macroscopic Observation 60 3.3.2 Micro-Computed Tomography 60 3.3.3 Optical Microscopy and Stereoscopy 61 3.3.4 Scanning Electron Microscopy 61 3.4 Mechanical Testing 62 3.4.1 Nanoindentation 62 3.4.2 Compressive Testing 63 3.4.3 Flexibility Demonstration 65 3.4.4 Whole Osteoderm Compression 65 3.5 Weibull Analysis 65 Chapter IV Results and Discussion 70 4.1 Overview: Hierarchical Structure 70 4.2 Macroscopic Observation 70 4.3 Mineral Content Measurement and Elemental Analysis 71 4.4 Micro-CT Imaging 73 4.5 Microstructural Characterization 75 4.5.1 Optical Microscopy 75 4.5.2 Scanning Electron Microscopy 77 4.6 Mechanical Behavior 79 4.6.1 Nano-mechanical Evaluation 79 4.6.2 Compressive Mechanical Behavior 82 4.7 Deformation Mechanisms 87 Chapter V Conclusions 104 Chapter VI Future Work 107 6.1 Fracture Toughness Measurement 107 6.1.1 Fracture Resistance Curve (R-curve) 109 6.1.2 Crack Propagation and Toughening Mechanisms 110 6.2 Bio-inspired Synthesis 111 6.2.1 Hybrid Organic/Inorganic Multi-layer Composites 112 6.2.2 Functionally Graded Ceramics 114 6.2.3 3D-printed Models and Novel Designs 116 References 128

    References
    [1] Chen P-Y, McKittrick J, Meyers MA. Biological materials: Functional adaptations and bioinspired designs. Prog Mater Sci 2012;57:1492-704.
    [2] Meyers MA, Chen P-Y, Lin AY-M, Seki Y. Biological materials: Structure and mechanical properties. Prog Mater Sci 2008;53:1-206.
    [3] Dunlop JWC, Fratzl P. Biological Composites. Ann Rev Mater Res 2010;40:1-24.
    [4] Fratzl P, Weinkamer R. Nature’s hierarchical materials. Prog Mater Sci 2007;52:1263-334.
    [5] Lakes R. Materials with structural hierarchy. Nature 1993;361:511-5.
    [6] Bhushan B. Biomimetics: lessons from nature--an overview. Philos Trans R Soc A 2009;367:1445-86.
    [7] Liu K, Jiang L. Bio-inspired design of multiscale structures for function integration. Nano Today 2011;6:155-75.
    [8] Fan T-X, Chow S-K, Zhang D. Biomorphic mineralization: From biology to materials. Prog Mater Sci 2009;54:542-659.
    [9] Kumar CSSR. Biomimetic and Bioinspired Nanomaterials. New Jersey: John Wiley & Sons; 2010.
    [10] Espinosa HD, Rim JE, Barthelat F, Buehler MJ. Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials. Prog Mater Sci 2009;54:1059-100.
    [11] Barthelat F. Biomimetics for next generation materials. Philos Trans R Soc A 2007;365:2907-19.
    [12] Luz GM, Mano JF. Biomimetic design of materials and biomaterials inspired by the structure of nacre. Philos Trans R Soc A 2009;367:1587-605.
    [13] Mann S, Heywood BR, Rajam S, Wade VJ. Molecular Recognition in Biomineralization. In: Suga S, Nakahara H, editors. Mechanisms and Phylogeny of Mineralization in Biological Systems: Springer Japan; 1991. p. 47-55.
    [14] Mann S, Archibald DD, Didymus JM, Douglas T, Heywood BR, Meldrum FC, et al. Crystallization at Inorganic-organic Interfaces: Biominerals and Biomimetic Synthesis. Science 1993;261:1286-92.
    [15] Colfen H. Biomineralization: A crystal-clear view. Nat Mater 2010;9:960-1.
    [16] Kamat S, Su X, Ballarini R, Heuer AH. Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 2000;405:1036-40.
    [17] Chen PY, Lin AY, McKittrick J, Meyers MA. Structure and mechanical properties of crab exoskeletons. Acta Biomater 2008;4:587-96.
    [18] Taylor JR, Patek SN. Ritualized fighting and biological armor: the impact mechanics of the mantis shrimp's telson. J Exp Biol 2010;213:3496-504.
    [19] Raabe D, Sachs C, Romano P. The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater 2005;53:4281-92.
    [20] Vincent JF, Wegst UG. Design and mechanical properties of insect cuticle. Arthropod Struct Dev 2004;33:187-99.
    [21] Yang W, Chen IH, Gludovatz B, Zimmermann EA, Ritchie RO, Meyers MA. Natural Flexible Dermal Armor. Adv Mater 2013;25:31-48.
    [22] Currey JD. Mechanical properties and adaptations of some less familiar bony tissues. J Mech Behav Biomed Mater 2010;3:357-72.
    [23] Ikoma T, Kobayashi H, Tanaka J, Walsh D, Mann S. Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. J Struct Biol 2003;142:327-33.
    [24] Bruet BJ, Song J, Boyce MC, Ortiz C. Materials design principles of ancient fish armour. Nat Mater 2008;7:748-56.
    [25] Lin YS, Wei CT, Olevsky EA, Meyers MA. Mechanical properties and the laminate structure of Arapaima gigas scales. J Mech Behav Biomed Mater 2011;4:1145-56.
    [26] Marino Cugno Garrano A, La Rosa G, Zhang D, Niu LN, Tay FR, Majd H, et al. On the mechanical behavior of scales from Cyprinus carpio. J Mech Behav Biomed Mater 2012;7:17-29.
    [27] Yang W, Gludovatz B, Zimmermann EA, Bale HA, Ritchie RO, Meyers MA. Structure and fracture resistance of alligator gar (Atractosteus spatula) armored fish scales. Acta Biomater 2013;9:5876-89.
    [28] Allison PG, Chandler MQ, Rodriguez RI, Williams BA, Moser RD, Weiss Jr CA, et al. Mechanical properties and structure of the biological multilayered material system, Atractosteus spatula scales. Acta Biomater 2013;9:5289-96.
    [29] Song J, Reichert S, Kallai I, Gazit D, Wund M, Boyce MC, et al. Quantitative microstructural studies of the armor of the marine threespine stickleback (Gasterosteus aculeatus). J Struct Biol 2010;171:318-31.
    [30] Rhee H, Horstemeyer MF, Hwang Y, Lim H, El Kadiri H, Trim W. A study on the structure and mechanical behavior of the Terrapene carolina carapace: A pathway to design bio-inspired synthetic composites. Mater Sci Eng C 2009;29:2333-9.
    [31] Achrai B, Wagner HD. Micro-structure and mechanical properties of the turtle carapace as a biological composite shield. Acta Biomater 2013;9:5890-902.
    [32] Krauss S, Monsonego-Ornan E, Zelzer E, Fratzl P, Shahar R. Mechanical Function of a Complex Three-Dimensional Suture Joining the Bony Elements in the Shell of the Red-Eared Slider Turtle. Adv Mater 2009;21:407-12.
    [33] Balani K, Patel RR, Keshri AK, Lahiri D, Agarwal A. Multi-scale hierarchy of Chelydra serpentina: microstructure and mechanical properties of turtle shell. J Mech Behav Biomed Mater 2011;4:1440-51.
    [34] Chen IH, Kiang JH, Correa V, Lopez MI, Chen PY, McKittrick J, et al. Armadillo armor: mechanical testing and micro-structural evaluation. J Mech Behav Biomed Mater 2011;4:713-22.
    [35] Rhee H, Horstemeyer MF, Ramsay A. A study on the structure and mechanical behavior of the Dasypus novemcinctus shell. Mater Sci Eng C 2011;31:363-9.
    [36] Zhu D, Ortega CF, Motamedi R, Szewciw L, Vernerey F, Barthelat F. Structure and Mechanical Performance of a “Modern” Fish Scale. Adv Eng Mater 2012;14:B185-B94.
    [37] Erickson GM, Lappin AK, Vliet KA. The ontogeny of bite-force performance in American alligator (Alligator mississippiensis). J Zool 2003;260:317-27.
    [38] Scheyer TM, Sander PM. Histology of ankylosaur osteoderms: implications for systematics and function. J Vertebr Paleontol 2004;24:874-93.
    [39] Thompson DW. On growth and form. Cambridge: Cambridge University Press; 1917.
    [40] Arzt E. Biological and artificial attachment devices: Lessons for materials scientists from flies and geckos. Mater Sci Eng C 2006;26:1245-50.
    [41] Wegst UGK, Ashby MF. The mechanical efficiency of natural materials. PMag 2004;84:2167-86.
    [42] Ritchie RO. The conflicts between strength and toughness. Nat Mater 2011;10:817-22.
    [43] Voigt W. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann Phys-Berlin 1889;274:573-87.
    [44] Reuss A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM-Z Angew Math Mech 1929;9:49-58.
    [45] Launey ME, Buehler MJ, Ritchie RO. On the Mechanistic Origins of Toughness in Bone. Ann Rev Mater Res 2010;40:25-53.
    [46] Fratzl P. Biomimetic materials research: what can we really learn from nature's structural materials? J R Soc Interface 2007;4:637-42.
    [47] Lichtenegger HC, Schöberl T, Bartl MH, Waite H, Stucky GD. High Abrasion Resistance with Sparse Mineralization: Copper Biomineral in Worm Jaws. Science 2002;298:389-92.
    [48] Lowenstam HA. Goethite in Radular Teeth of Recent Marine Gastropods. Science 1962;137:279-80.
    [49] Mathews CK, Van Holde KE, Ahern KG. Biochemistry. 3rd ed. San Francisco, CA: Benjamin/Cummings, Addison Wesley Longman; 2000.
    [50] Gosline J, Lillie M, Carrington E, Guerette P, Ortlepp C, Savage K. Elastic proteins: biological roles and mechanical properties. Philos Trans R Soc Lond B Biol Sci 2002;357:121-32.
    [51] Elvin CM, Carr AG, Huson MG, Maxwell JM, Pearson RD, Vuocolo T, et al. Synthesis and properties of crosslinked recombinant pro-resilin. Nature 2005;437:999-1002.
    [52] Kelly RE, Rice RV. Abductin: A Rubber-Like Protein from the Internal Triangular Hinge Ligament of Pecten. Science 1967;155:208-10.
    [53] Fratzl P. Collagen: structure and mechanics: Springer; 2008.
    [54] Fratzl P, Misof K, Zizak I, Rapp G, Amenitsch H, Bernstorff S. Fibrillar Structure and Mechanical Properties of Collagen. J Struct Biol 1998;122:119-22.
    [55] Ottani V, Raspanti M, Ruggeri A. Collagen structure and functional implications. Micron 2001;32:251-60.
    [56] Fung YC. Biomechanics: mechanical properties of living tissues. 2nd ed. New York: Springer-Verlag; 1993.
    [57] Wang JHC. Mechanobiology of tendon. J Biomech 2006;39:1563-82.
    [58] McKittrick J, Chen PY, Bodde SG, Yang W, Novitskaya EE, Meyers MA. The Structure, Functions, and Mechanical Properties of Keratin. JOM 2012;64:449-68.
    [59] Weiner S, Addadi L. At the Cutting Edge. Science 2002;298:375-6.
    [60] Kay MI, Young RA, Posner AS. Crystal structure of hydroxyapatite. Nature 1964;204:1050-2.
    [61] Jackson SA, Cartwright AG, Lewis D. The morphology of bone mineral crystals. Calcif Tissue Res 1978;25:217-22.
    [62] Landis WJ, Hodgens KJ, Arena J, Song MJ, McEwen BF. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Tech 1996;33:192-202.
    [63] Gibson LJ. Biomechanics of cellular solids. J Biomech 2005;38:377-99.
    [64] Ashby MF, Medalist RFM. The mechanical properties of cellular solids. Metall Trans A 1983;14:1755-69.
    [65] Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties. 2nd ed. Cambridge: Cambridge University Press; 1999.
    [66] Weiner S, Wagner HD. The Material Bone: Structure-Mechanical Function Relations. Annu Rev Mater Sci 1998;28:271-98.
    [67] Jackson AP, Vincent JFV, Turner RM. The Mechanical Design of Nacre. Proc R Soc Lond B Biol Sci 1988;234:415-40.
    [68] Wang RZ, Suo Z, Evans AG, Yao N, Aksay IA. Deformation mechanisms in nacre. J Mater Res 2001;16:2485-93.
    [69] Li X, Chang W-C, Chao YJ, Wang R, Chang M. Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material:  The Shell of Red Abalone. Nano Lett 2004;4:613-7.
    [70] Barthelat F, Tang H, Zavattieri PD, Li CM, Espinosa HD. On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. J Mech Phys Solids 2007;55:306-37.
    [71] Meyers MA, Lin AY, Chen PY, Muyco J. Mechanical strength of abalone nacre: role of the soft organic layer. J Mech Behav Biomed Mater 2008;1:76-85.
    [72] Espinosa HD, Juster AL, Latourte FJ, Loh OY, Gregoire D, Zavattieri PD. Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nat Commun 2011;2:173.
    [73] Katti KS, Katti DR, Pradhan SM, Bhosle A. Platelet interlocks are the key to toughness and strength in nacre. J Mater Res 2011;20:1097-100.
    [74] Sun J, Bhushan B. Hierarchical structure and mechanical properties of nacre: a review. RSC Advances 2012;2:7617.
    [75] Menig R, Meyers MH, Meyers MA, Vecchio KS. Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. Acta Mater 2000;48:2383-98.
    [76] Jackson AP, Vincent JFV, Turner RM. Comparison of nacre with other ceramic composites. J Mater Sci 1990;25:3173-8.
    [77] Chen PY, Lin AY, Lin YS, Seki Y, Stokes AG, Peyras J, et al. Structure and mechanical properties of selected biological materials. J Mech Behav Biomed Mater 2008;1:208-26.
    [78] Yao H, Dao M, Imholt T, Huang J, Wheeler K, Bonilla A, et al. Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod. Proc Natl Acad Sci U S A 2010;107:987-92.
    [79] Bouligand Y. Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue Cell 1972;4:189-217.
    [80] Dai Z, Yang Z. Macro-/Micro-Structures of Elytra, Mechanical Properties of the Biomaterial and the Coupling Strength Between Elytra in Beetles. J Bionic Eng 2010;7:6-12.
    [81] Vincent JFV. Arthropod cuticle: a natural composite shell system. Composites Part A 2002;33:1311-5.
    [82] Vickaryous MK, Sire JY. The integumentary skeleton of tetrapods: origin, evolution, and development. J Anat 2009;214:441-64.
    [83] Wang L, Song J, Ortiz C, Boyce MC. Anisotropic design of a multilayered biological exoskeleton. J Mater Res 2009;24:3477-94.
    [84] Han L, Wang L, Song J, Boyce MC, Ortiz C. Direct quantification of the mechanical anisotropy and fracture of an individual exoskeleton layer via uniaxial compression of micropillars. Nano Lett 2011;11:3868-74.
    [85] Song J, Ortiz C, Boyce MC. Threat-protection mechanics of an armored fish. J Mech Behav Biomed Mater 2011;4:699-712.
    [86] Meyers MA, Lin YS, Olevsky EA, Chen PY. Battle in the Amazon: Arapaima versus Piranha. Adv Eng Mater 2012;14:B279-B88.
    [87] Vernerey FJ, Barthelat F. On the mechanics of fishscale structures. IJSS 2010;47:2268-75.
    [88] Zhu D, Vernerey F, Barthelat F. The Mechanical Performance of Teleost Fish Scales. In: Proulx T, editor. Mechanics of Biological Systems and Materials, Volume 2: Springer New York; 2011. p. 117-23.
    [89] Damiens R, Rhee H, Hwang Y, Park SJ, Hammi Y, Lim H, et al. Compressive behavior of a turtle's shell: experiment, modeling, and simulation. J Mech Behav Biomed Mater 2012;6:106-12.
    [90] Farlow JO, Hayashi S, Tattersall GJ. Internal vascularity of the dermal plates of Stegosaurus (Ornithischia, Thyreophora). Swiss J Geosci 2010;103:173-85.
    [91] Buffrenil V, Sire JY, Rage JC. The histological structure of glyptosaurine osteoderms (Squamata: Anguidae), and the problem of osteoderm development in squamates. J Morphol 2010;271:729-37.
    [92] Cerda IA, Desojo JB. Dermal armour histology of aetosaurs (Archosauria: Pseudosuchia), from the Upper Triassic of Argentina and Brazil. Lethaia 2011;44:417-28.
    [93] Main RP, de Ricqles A, Horner JR, Padian K. The evolution and function of thyreophoran dinosaur scutes: implications for plate function in stegosaurs. Paleobiology 2005;31:291-314.
    [94] Vickaryous MK, Hall BK. Development of the dermal skeleton in Alligator mississippiensis (Archosauria, Crocodylia) with comments on the homology of osteoderms. J Morphol 2008;269:398-422.
    [95] Farlow JO, Thompson CV, Rosner DE. Plates of the Dinosaur Stegosaurus: Forced Convection Heat Loss Fins? Science 1976;192:1123-5.
    [96] Curry Rogers K, D'Emic M, Rogers R, Vickaryous M, Cagan A. Sauropod dinosaur osteoderms from the Late Cretaceous of Madagascar. Nat Commun 2011;2:564.
    [97] Seidel MR. The osteoderms of the American alligator and their functional significance. Herpetologica 1979;35:375-80.
    [98] Jeffree RA, Markich SJ, Twining JR. Element Concentrations in the Flesh and Osteoderms of Estuarine Crocodiles ( Crocodylus porosus ) from the Alligator Rivers Region, Northern Australia: Biotic and Geographic Effects. Arch Environ Contam Toxicol 2001;40:236-45.
    [99] Markich SJ, Jeffree RA, Harch BD. Catchment-specific element signatures in estuarine crocodiles (Crocodylus porosus) from the Alligator Rivers Region, northern Australia. Sci Total Environ 2002;287:83-95.
    [100] Hutton JM. Age determination of living nile crocodiles from the cortical stratification of bone. Copeia 1986:332-41.
    [101] Tucker AD. Validation of skeletochronology to determine age of freshwater crocodiles (Crocodylus johnstoni). Mar Freshw Res 1997;48:343-51.
    [102] Yuan CM, Ala-Kokko L, Le Guellec D, Franc S, Fertala A, Khillan JS, et al. Lack of a phenotype in transgenic mice aberrantly expressing COL2A1 mRNA because of highly selective post-transcriptional down-regulation. Biochem J 2000;345:377-84.
    [103] Fedorczyk JM. Tennis Elbow: Blending Basic Science with Clinical Practice. J Hand Ther 2006;19:146-53.
    [104] Chen PY, Stokes AG, McKittrick J. Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis). Acta Biomater 2009;5:693-706.
    [105] Romano P, Fabritius H, Raabe D. The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material. Acta Biomater 2007;3:301-9.
    [106] Saalfeld DT, Webb KK, Conway WC, Calkins GE, Duguay JP. Growth and Condition of American Alligators (Alligator mississippiensis) in an Inland Wetland of East Texas. Southeast Nat 2008;7:541-50.
    [107] Song YF, Chang CH, Liu CY, Chang SH, Jeng US, Lai YH, et al. X-ray beamlines for structural studies at the NSRRC superconducting wavelength shifter. Journal of synchrotron radiation 2007;14:320-5.
    [108] Rho JY, Zioupos P, Currey JD, Pharr GM. Variations in the individual thick lamellar properties within osteons by nanoindentation. Bone 1999;25:295-300.
    [109] Meyers MA, Chawla KK. Mechanical behavior of materials: Prentice Hall; 1999.
    [110] Weibull W. A statistical distribution function of wide applicability. J Appl Mech-Trans ASME 1951;18:293-7.
    [111] Alibardi L, Thompson MB. Fine structure of the developing epidermis in the embryo of the American alligator (Alligator mississippiensis, Crocodilia, Reptilia). J Anat 2001;198:265-82.
    [112] Grigg G, Gans C. Morphology and Physiology of the Crocodylia. In: C.G.Glasby, G.J.B.Ross, P.L.Beesley, editors. Fauna of Australia, Vol 2A Amphibia and Reptilia: Australian Government Publishing Service, Canberra.; 1993.
    [113] Currey JD. Mechanical properties of bone tissues with greatly differing functions. J Biomech 1979;12:313-9.
    [114] Kienzle E, Kopsch G, Koelle P, Clauss M. Chemical composition of turtles and tortoises. J Nutr 2006;136:2053S-4S.
    [115] Seki Y, Kad B, Benson D, Meyers MA. The toucan beak: Structure and mechanical response. Mater Sci Eng C 2006;26:1412-20.
    [116] Bodde SG, Meyers MA, McKittrick J. Correlation of the mechanical and structural properties of cortical rachis keratin of rectrices of the Toco Toucan (Ramphastos toco). J Mech Behav Biomed Mater 2011;4:723-32.
    [117] Currey JD. The Structure of Bone Tissue. Bones: Structure and Mechanics. New Jersey: Princeton University Press; 2002. p. 3-26.
    [118] Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 1992;7:1564-83.
    [119] Chen P-Y, Schirer J, Simpson A, Nay R, Lin Y-S, Yang W, et al. Predation versus protection: Fish teeth and scales evaluated by nanoindentation. J Mater Res 2011;27:100-12.
    [120] Grant CA, Brockwell DJ, Radford SE, Thomson NH. Effects of hydration on the mechanical response of individual collagen fibrils. Appl Phys Lett 2008;92:233902.
    [121] Pithioux M, Lasaygues P, Chabrand P. An alternative ultrasonic method for measuring the elastic properties of cortical bone. J Biomech 2002;35:961-8.
    [122] Zysset PK, Edward Guo X, Edward Hoffler C, Moore KE, Goldstein SA. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 1999;32:1005-12.
    [123] Rho J-Y, Pharr GM. Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. J Mater Sci Mater Med 1999;10:485-8.
    [124] Bonfield W, Clark EA. Elastic deformation of compact bone. J Mater Sci 1973;8:1590-4.
    [125] Mackenzie JK. The elastic constants of a solid containing spherical holes. Proc Phys Soc B 1950;63:2-11.
    [126] Dieter G. Mechanical metallurgy - SI Metric ed. London: McGraw-Hill Book Company (UK) Limited; 2005.
    [127] ASTM Standard E399-12, Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials. In: Annual Book of ASTM Standards. Philadelphia, PA: The American Society for Testing and Materials; 2012.
    [128] Zimmermann EA, Launey ME, Ritchie RO. The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone. Biomaterials 2010;31:5297-305.
    [129] Launey ME, Chen PY, McKittrick J, Ritchie RO. Mechanistic aspects of the fracture toughness of elk antler bone. Acta Biomater 2010;6:1505-14.
    [130] Nalla RK, Kinney JH, Ritchie RO. Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater 2003;2:164-8.
    [131] Nalla RK, Stölken JS, Kinney JH, Ritchie RO. Fracture in human cortical bone: local fracture criteria and toughening mechanisms. J Biomech 2005;38:1517-25.
    [132] Hirata GA, Diaz SP, Chen P-Y, Meyers MA, McKittrick J. Bioinspired Inorganic/polymer Thin Films. MRS Symp Proc 2009.
    [133] Deville S. Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues. Adv Eng Mater 2008;10:155-69.
    [134] Deville S, Saiz E, Nalla RK, Tomsia AP. Freezing as a path to build complex composites. Science 2006;311:515-8.
    [135] Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO. Tough, Bio-Inspired Hybrid Materials. Science 2008;322:1516-20.
    [136] Launey ME, Munch E, Alsem DH, Saiz E, Tomsia AP, Ritchie RO. A novel biomimetic approach to the design of high-performance ceramic-metal composites. J R Soc Interface 2010;7:741-53.
    [137] Launey ME, Munch E, Alsem DH, Barth HB, Saiz E, Tomsia AP, et al. Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Mater 2009;57:2919-32.
    [138] Macchetta A, Turner IG, Bowen CR. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater 2009;5:1319-27.
    [139] Zhang Y, Hu L, Han J. Preparation of a Dense/Porous BiLayered Ceramic by Applying an Electric Field During Freeze Casting. J Am Ceram Soc 2009;92:1874-6.
    [140] Dimas LS, Bratzel GH, Eylon I, Buehler MJ. Tough Composites Inspired by Mineralized Natural Materials: Computation, 3D printing, and Testing. Adv Funct Mater 2013; in press.
    [141] Reichert SH. Reverse engineering nature: Design principles for flexible protection inspired by ancient fish armor of Polypteridae. Master’s Thesis, Department of Architecture, Massachusetts Institute of Technology 2010.
    [142] Porter MM, Yeh M, Strawson J, Goehring T, Lujan S, Siripasopsotorn P, et al. Magnetic freeze casting inspired by nature. Mater Sci Eng A 2012;556:741-50.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE