研究生: |
黃千祐 Huang, Chien-You Jason |
---|---|
論文名稱: |
福衛八號第二枚衛星上的伽瑪射線瞬變事件監測儀(GTM)之研究 Studies on the Gamma-ray Transients Monitor (GTM) on board Formosat-8B Satellite |
指導教授: |
張祥光
Chang, Hsiang-Kuang |
口試委員: |
林志勳
Lin, Chih-Hsun 曹哲之 Tsao, Che-Chih 楊湘怡 Yang, Hsiang-Yi |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 79 |
中文關鍵詞: | 太空望遠鏡 、伽瑪射線暴 、閃爍體 、矽光電倍增管 |
外文關鍵詞: | Space Telescope, GRB, Scintillator, SiPM |
相關次數: | 點閱:21 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
伽瑪射線瞬變事件監測儀(GTM)是福衛八號第二枚衛星(FS-8B)上的次要籌載,該衛星由國家太空中心(TASA)開發,計畫於2026年發射。GTM的目標是偵測和定位伽瑪射線爆(GRBs)。GTM由位於FS-8B兩側的兩個相同模組組成。每個模組使用2個CITIROC晶片來操作4個探測器,這些探測器由GAGG(Ce)閃爍體與矽光電倍增管(SiPMs)耦合組成,並且以不同方向排列以實現全天空覆蓋。
本論文內容可分為兩部分。在第一部分,根據模擬得知GTM的探測效率在GRB輻射通量(能量範圍從10 keV到1 MeV)大於6e-7和2e-6 erg/cm^2時,對短伽瑪射線爆(SGRBs)和長伽瑪射線爆(LGRBs)分別超過50%。因此,依據Fermi/GBM十年來觀測到的GRB輻射通量分佈和GTM 36%的工作週期,預計GTM每年可偵測到約50個GRB。關於定位能力,對於GRB輻射通量為4e-6和4e-5 erg/cm^2的LGRBs,99.7%信水準下的定位不確定度分別約為30和3度。
在第二部分,考量CITIROC晶片的死區時間,估算出SGRBs和LGRBs的GRB飽和輻射通量分別約為3.1e-4和5.0e-3 erg/cm^2。此外,為了詮釋GTM的讀出訊號與能量之間的關係,進行了若干校準測量。儘管在數據中遇到閃爍光分光和SiPM飽和效應的問題,測量的能譜仍可以被恢復。在662 keV,GTM的能量解析度約為15%。光子能量與讀出訊號之間關係的線性變化表明,透過增加電壓或降低溫度可以獲得更大的增益。
The Gamma-ray Transients Monitor (GTM) is a secondary payload on board Formosat-8B (FS-8B), a satellite made by the Taiwan Space Agency (TASA) and scheduled to launch in 2026. The goal of GTM is to detect and localize Gamma-Ray Bursts (GRBs). GTM consists of two identical modules located on opposite sides of FS-8B. Each module utilizes 2 CITIROC chips to manipulate 4 detectors, which are composed of GAGG(Ce) scintillators coupled with Silicon Photo-Multipliers (SiPMs) and oriented in various directions to achieve all-sky coverage.
The content of this thesis can be split into two parts. In the first part, based on simulations, the detection efficiency is larger than 50 % when the GRB fluences (in the energy range from 10 keV to 1 MeV) are larger than 6e-7 and 2e-6 erg/cm^2 for Short GRBs (SGRBs) and Long GRBs (LGRBs), respectively. Therefore, GTM is expected to detect about 50 GRBs per year, according to the Fermi/GBM 10-year observation of the GRB-fluence distribution and GTM's 36 % duty cycle. For localization capability, the localization uncertainty at a 3-sigma confidence level for LGRBs with fluences of 4e-6 and 4e-5 erg/cm^2 is about 30 and 3 degrees, respectively.
In the second part, considering to the dead time of a CITIROC chip, the GRB saturation fluences for SGRBs and LGRBs were estimated to be about 3.1e-4 and 5.0e-3 erg/cm^2, respectively. Moreover, to interpret the GTM readout signal in terms of energy, several calibration measurements were conducted. Despite encountering issues with light-sharing and the SiPM saturation effect in the data, the energy spectrum can still be recovered. At 662 keV, the energy resolution of the GTM is about 15 %. The linear variations in the relationship between photon energy and readout signal demonstrate that greater gain is achieved by increasing voltage or decreasing temperature.
[1] B. P. Abbott. “Multi-messenger Observations of a Binary Neutron Star Merger”. In: The Astrophysical Journal Letters 848.2 (2017), p. L12. doi: 10.3847/2041- 8213/aa91c9.
[2] A. Abdo, M. Ackermann, M. Ajello, W. Atwood, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, B. Baughman, K. Bechtol, et al. “Fermi large area telescope observations of the cosmic-ray induced γ-ray emission of the Earth’s atmosphere”. In: Physical Review D 80.12 (2009), p. 122004. doi: 10.1103/ PhysRevD.80.122004.
[3] F. Acerbi and S. Gundacker. “Understanding and simulating SiPMs”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 926 (2019), pp. 16–35. doi: 10. 1016/j.nima.2018.11.118.
[4] J. Alcaraz, B. Alpat, G. Ambrosi, H. Anderhub, L. Ao, A. Arefiev, P. Azzarello, E. Babucci, L. Baldini, M. Basile, et al. “Leptons in near earth orbit”. In: Physics Letters B 484.1-2 (2000), pp. 10–22. doi: 10.1016/S0370-2693(00)00588- 8.
[5] H. Alva-Sa ́nchez, A. Zepeda-Barrios, V. D ́ıaz-Mart ́ınez, T. Murrieta-Rodr ́ıguez, A. Mart ́ınez-D ́avalos, and M. Rodr ́ıguez-Villafuerte. “Understanding the intrinsic radioactivity energy spectrum from 176Lu in LYSO/LSO scintillation crystals”. In: Scientific reports 8.1 (2018), p. 17310. doi: 10.1038/s41598-018- 35684-x.
[6] L. Amati, F. Frontera, M. Tavani, A. Antonelli, E. Costa, M. Feroci, C. Guidorzi, J. Heise, N. Masetti, E. Montanari, et al. “Intrinsic spectra and energetics of bepposax gamma–ray bursts with known redshifts”. In: Astronomy & Astrophysics 390.1 (2002), pp. 81–89. doi: 10.1051/0004-6361:20020722.
[7] C. L. Anderson and C. R. Crowell. “Threshold Energies for Electron-Hole Pair Production by Impact Ionization in Semiconductors”. In: Phys. Rev. B 5 (6 1972), pp. 2267–2272. doi: 10.1103/PhysRevB.5.2267.
[8] Y. Avni. “Energy spectra of X-ray clusters of galaxies”. In: Astrophysical Journal 210 (1976), pp. 642–646. doi: 10.1086/154870.
[9] D. Band, J. Matteson, L. Ford, B. Schaefer, D. Palmer, B. Teegarden, T. Cline, M. Briggs, W. Paciesas, G. Pendleton, et al. “BATSE observations of gamma-ray burst spectra. I-Spectral diversity”. In: Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 413, no. 1, p. 281-292. 413 (1993), pp. 281–292. doi: 10.1086/ 172995.
[10] P. R. Bevington and D. K. Robinson. Data Reduction and Error Analysis for the Physical Sciences. McGraw Hill, 1969. isbn: 978-0072472271. url: https://experimentationlab.berkeley.edu/sites/default/files/pdfs/Bevington.pdf.
[11] E. Bissaldi, A. von Kienlin, G. Lichti, H. Steinle, P. N. Bhat, M. S. Briggs, G. J. Fishman, A. S. Hoover, R. M. Kippen, M. Krumrey, M. Gerlach, V. Connaughton, R. Diehl, J. Greiner, A. J. van der Horst, C. Kouveliotou, S. McBreen, C. A. Meegan, W. S. Paciesas, R. D. Preece, and C. A. Wilson-Hodge. “Ground-based calibration and characterization of the Fermi gamma-ray burst monitor detectors”. In: Experimental Astronomy 24.1–3 (2009), pp. 47–88. doi: 10.1007/s10686-008-9135-4.
[12] G. Bizarri. “Scintillation mechanisms of inorganic materials: From crystal characteristics to scintillation properties”. In: Journal of Crystal Growth 312.8 (2010), pp. 1213–1215. doi: 10.1016/j.jcrysgro.2009.12.063.
[13] P. Buzhan, B. Dolgoshein, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, A. Pleshko, E. Popova, S. Smirnov, Y. Volkov, et al. “The advanced study of silicon photomultiplier”. In: Advanced technology and particle physics. World Scientific, 2002, pp. 717–728. doi: 10.1142/9789812776464_0101.
[14] H.-K. Chang, C.-H. Lin, C.-C. Tsao, C.-Y. Chu, S.-C. Yang, C.-Y. Huang, C.-H. Wang, T.-H. Su, Y.-H. Chung, Y.-W. Chang, Z.-J. Gong, J.-Y. Hsiang, K.-L. Lai, T.-H. Lin, C.-Y. Lu, and C.-Y. Yang. “The Gamma-ray Transients Monitor (GTM) on board Formosat-8B and its GRB detection efficiency”. In: Advances in Space Research 69.2 (2022), pp. 1249–1255. doi: 10.1016/j.asr. 2021.10.044.
[15] H. Cho, H. Ding, B. Ziemer, and S. Molloi. “Energy response calibration of photon-counting detectors using x-ray fluorescence: a feasibility study”. In: Physics in Medicine & Biology 59.23 (2014), p. 7211. doi: 10.1088/0031- 9155/59/23/7211.
[16] V. Connaughton, M. Briggs, A. Goldstein, C. Meegan, W. Paciesas, R. Preece, C. Wilson-Hodge, M. Gibby, J. Greiner, D. Gruber, et al. “Localization of gamma-ray bursts using the fermi gamma-ray burst monitor”. In: The Astrophysical Journal Supplement Series 216.2 (2015), p. 32. doi: 10.1088/0067- 0049/216/2/32.
[17] E. e. Costa, F. Frontera, J. Heise, M. a. Feroci, J. In’t Zand, F. Fiore, M. Cinti, D. Dal Fiume, L. Nicastro, M. Orlandini, et al. “Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997”. In: Nature 387.6635 (1997), pp. 783–785. doi: 10.1038/42885.
[18] M. Demianski, E. Piedipalumbo, D. Sawant, and L. Amati. “Cosmology with gamma-ray bursts-I. The Hubble diagram through the calibrated Ep, i–Eiso correlation”. In: Astronomy & Astrophysics 598 (2017), A112. doi: 10.1051/ 0004-6361/201628909.
[19] N. Demir and Z. N. Kulu ̈oztu ̈rk. “Determination of energy resolution for a NaI(Tl) detector modeled with FLUKA code”. In: Nuclear Engineering and Technology 53.11 (2021), pp. 3759–3763. doi: 10.1016/j.net.2021.05.017.
[20] B. G. Durdu, E. Akkutlu, A. Ku ̈ ̧cu ̈ko ̈nder, and H. C ̧am. “Analytical Investigation on Some K X-Ray Fluorescence Parameters of Barium Compounds”. In: Acta Physica Polonica: A 141.5 (2022). doi: 10.12693/APhysPolA.141.474.
[21] L. Eriksson, C. Watson, K. Wienhard, M. Eriksson, M. Casey, C. Knoess, M. Lenox, Z. Burbar, M. Conti, W. Heiss, B. Bendriem, and R. Nutt. “The ECAT HRRT: an example of NEMA scatter estimation issues for LSO based PET systems”. In: 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515). Vol. 3. 2003, pp. 1941–1944. doi: 10.1109/NSSMIC. 2003.1352259.
[22] D. Frail, S. R. Kulkarni, L. Nicastro, M. Feroci, and G. Taylor. “The radio afterglow from the γ-ray burst of 8 May 1997”. In: Nature 389.6648 (1997), pp. 261–263. doi: 10.1038/38451.
[23] F. Frontera, C. Guidorzi, E. Montanari, F. Rossi, E. Costa, M. Feroci, F. Calura, M. Rapisarda, L. Amati, D. Carturan, et al. “The gamma-ray burst catalog obtained with the Gamma-Ray Burst Monitor aboard BeppoSAX”. In: The Astrophysical Journal Supplement Series 180.1 (2008), p. 192. doi: 10.1088/ 0067-0049/180/1/192.
[24] N. Gehrels, J. Norris, S. Barthelmy, J. Granot, Y. Kaneko, C. Kouveliotou, C. Markwardt, P. M ́esz ́aros, E. Nakar, J. Nousek, et al. “A new γ-ray burst classification scheme from GRB 060614”. In: Nature 444.7122 (2006), pp. 1044– 1046. doi: 10.1038/nature05376.
[25] G. Ghirlanda, G. Ghisellini, and D. Lazzati. “The collimation-corrected gamma-ray burst energies correlate with the peak energy of their νFν spectrum”. In: The Astrophysical Journal 616.1 (2004), p. 331. doi: 10.1086/424913.
[26] A. Goldstein, C. Fletcher, P. Veres, M. S. Briggs, W. H. Cleveland, M. H. Gibby, C. M. Hui, E. Bissaldi, E. Burns, R. Hamburg, et al. “Evaluation of automated fermi gbm localizations of gamma-ray bursts”. In: The Astrophysical Journal 895.1 (2020), p. 40. doi: 10.3847/1538-4357/ab8bdb.
[27] A ́. Gonza ́lez. “Measurement of areas on a sphere using Fibonacci and latitude–longitude lattices”. In: Mathematical Geosciences 42 (2010), pp. 49–64. doi: 10. 1007/s11004-009-9257-x.
[28] D. Gruber, J. Matteson, L. Peterson, and G. Jung. “The spectrum of diffuse cosmic hard X-rays measured with HEAO 1”. In: The Astrophysical Journal 520.1 (1999), p. 124. doi: 10.1086/307450.
[29] D. Harris, E. Foufoula-Georgiou, and C. Kummerow. “Effects of underrepresented hydrometeor variability and partial beam filling on microwave brightness temperatures for rainfall retrieval”. In: Journal of Geophysical Research: Atmospheres 108.D8 (2003). doi: 10.1029/2001JD001144.
[30] M. Hofbauer, B. Steindl, and H. Zimmermann. “Temperature dependence of dark count rate and after pulsing of a single-photon avalanche diode with an integrated active quenching circuit in 0.35 μm CMOS”. In: Journal of Sensors 2018 (2018). doi: 10.1155/2018/9585931.
[31] D. Impiombato, S. Giarrusso, T. Mineo, O. Catalano, C. Gargano, G. La Rosa, F. Russo, G. Sottile, S. Billotta, G. Bonanno, S. Garozzo, A. Grillo, D. Marano, and G. Romeo. “Characterization and performance of the ASIC (CITIROC) front-end of the ASTRI camera”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 794 (2015), pp. 185–192. doi: 10.1016/j.nima.2015.05.028.
[32] L. Izzo, M. Muccino, E. Zaninoni, L. Amati, and M. Della Valle. “New measurements of Ωm from gamma-ray bursts”. In: Astronomy & Astrophysics 582 (2015), A115. doi: 10.1051/0004-6361/201526461.
[33] Y. Kaneko, R. D. Preece, M. S. Briggs, W. S. Paciesas, C. A. Meegan, and D. L. Band. “The complete spectral catalog of bright BATSE gamma-ray bursts”. In: The Astrophysical Journal Supplement Series 166.1 (2006), p. 298. doi: 10. 1086/505911.
[34] R. W. Klebesadel, I. B. Strong, and R. A. Olson. “Observations of gamma-ray bursts of cosmic origin”. In: Astrophysical Journal 182 (1973), p. L85. doi: 10.1086/181225.
[35] N. Knighton and B. Bugbee. “A mixture of barium sulfate and white paint is a low-cost substitute reflectance standard for spectralon”. In: Tech Instrum 11 (2005), pp. 4–6. url: https://api.semanticscholar.org/CorpusID: 136274928.
[36] M. Kole. “Background studies for the balloon-borne hard X-ray polarimeter PoGOLite”. PhD thesis. KTH Royal Institute of Technology, 2014. url: https://www.diva-portal.org/smash/record.jsf?pid=diva2% 3A762756&dswid=1297.
[37] K. Kotera, W. Choi, and T. Takeshita. “Describing the response of saturated SiPMs”. In: arXiv preprint (2015). doi: 10.48550/arXiv.1510.01102.
[38] C. Kouveliotou, C. A. Meegan, G. J. Fishman, N. P. Bhat, M. S. Briggs, T. M. Koshut, W. S. Paciesas, and G. N. Pendleton. “Identification of two classes of gamma-ray bursts”. In: The Astrophysical Journal 413 (1993), pp. L101–L104. doi: 10.1086/186969.
[39] E. M. Levesque, J. S. Bloom, N. R. Butler, D. A. Perley, S. B. Cenko, J. X. Prochaska, L. J. Kewley, A. Bunker, H.-W. Chen, R. Chornock, et al. “Grb 090426: The environment of a rest-frame 0.35-s gamma-ray burst at a redshift of 2.609”. In: Monthly Notices of the Royal Astronomical Society 401.2 (2010), pp. 963–972. doi: 10.1111/j.1365-2966.2009.15733.x.
[40] A. Lien, T. Sakamoto, S. D. Barthelmy, W. H. Baumgartner, J. K. Cannizzo, K. Chen, N. R. Collins, J. R. Cummings, N. Gehrels, H. A. Krimm, et al. “The third swift burst alert telescope gamma-ray burst catalog”. In: The Astrophysical Journal 829.1 (2016), p. 7. doi: 10.3847/0004-637X/829/1/7.
[41] H.-J. Lu ̈, E.-W. Liang, B.-B. Zhang, and B. Zhang. “A new classification method for gamma-ray bursts”. In: The Astrophysical Journal 725.2 (2010), p. 1965. doi: 10.1088/0004-637X/725/2/1965.
[42] M.Makek,D.Bosnar,andL.Paveli ́c.“Scintillator pixel detectors for measurement of Compton scattering”. In: Condensed matter 4.1 (2019), p. 24. doi: 10.3390/condmat4010024.
[43] P. Meszaros. “Gamma-ray bursts”. In: Reports on Progress in Physics 69.8 (2006), p. 2259. doi: 10.1088/0034-4885/69/8/R01.
[44] P. M ́esza ́ros. “Theories of gamma-ray bursts”. In: Annual Review of Astronomy and Astrophysics 40.1 (2002), pp. 137–169. doi: 10.1146/annurev.astro. 40.060401.093821.
[45] T. Mizuno, T. Kamae, G. Godfrey, T. Handa, D. Thompson, D. Lauben, Y. Fukazawa, and M. Ozaki. “Cosmic-ray background flux model based on a gamma-ray large area space telescope balloon flight engineering model”. In: The Astrophysical Journal 614.2 (2004), p. 1113. doi: 10.1086/423801.
[46] A. N. Otte, D. Garcia, T. Nguyen, and D. Purushotham. “Characterization of three high efficiency and blue sensitive silicon photomultipliers”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 846 (2017), pp. 106–125. doi: 10.1016/j.nima.2016.09.053.
[47] W. S. Paciesas, C. A. Meegan, G. N. Pendleton, M. S. Briggs, C. Kouveliotou, T. M. Koshut, J. P. Lestrade, M. L. McCollough, J. J. Brainerd, J. Hakkila, et al. “The fourth BATSE gamma-ray burst catalog (revised)”. In: The Astrophysical Journal Supplement Series 122.2 (1999), p. 465. doi: 10.1086/313224.
[48] K. Pearson. “X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling”. In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 50.302 (1900), pp. 157–175. doi: 10.1080/14786440009463897.
[49] M. Perri, P. Garosi, C. Mattone, C. Tintori, M. Corbo, D. Ninci, M. Venaruzzo, Y. Venturini, and A. Saltarelli. “Amplitude Measurements With SiPM and ASIC (Citiroc 1A) Front-End Electronics”. In: IEEE Transactions on Nuclear Science 70.6 (2023), pp. 1023–1029. doi: 10.1109/TNS.2023.3262409.
[50] P. Rodnyi. Physical Processes in Inorganic Scintillators. Laser & Optical Science & Technology. Taylor & Francis, 1997. doi: 10.1201/9780138743352.
[51] D. Svinkin, D. Frederiks, R. Aptekar, S. Golenetskii, V. Pal’Shin, P. P. Oleynik, A. Tsvetkova, M. Ulanov, T. Cline, and K. Hurley. “The second Konus-Wind catalog of short gamma-ray bursts”. In: The Astrophysical Journal Supplement Series 224.1 (2016), p. 10. doi: 10.3847/0067-0049/224/1/10.
[52] A. Tsvetkova, D. Frederiks, S. Golenetskii, A. Lysenko, P. Oleynik, V. Pal’shin, D. Svinkin, M. Ulanov, T. Cline, K. Hurley, et al. “The Konus-wind catalog of gamma-ray bursts with known redshifts. I. Bursts detected in the triggered mode”. In: The Astrophysical Journal 850.2 (2017), p. 161. doi: 10.3847/ 1538-4357/aa96af.
[53] M. Tu ̈rler, M. Chernyakova, T.-L. Courvoisier, P. Lubin ́ski, A. Neronov, N. Produit, and R. Walter. “INTEGRAL hard X-ray spectra of the cosmic X-ray background and Galactic ridge emission”. In: Astronomy & Astrophysics 512 (2010), A49. doi: 10.1051/0004-6361/200913072.
[54] J. Van Paradijs, P. Groot, T. Galama, C. Kouveliotou, R. Strom, J. Telting, R. Rutten, G. Fishman, C. Meegan, M. Pettini, et al. “Transient optical emission from the error box of the γ-ray burst of 28 February 1997”. In: Nature 386.6626 (1997), pp. 686–689. doi: 10.1038/386686a0.
[55] Y. P. Varshni. “Temperature dependence of the energy gap in semiconductors”. In: physica 34.1 (1967), pp. 149–154. doi: 10.1016/0031-8914(67)90062- 6.
[56] A. Von Kienlin, C. Meegan, W. Paciesas, P. Bhat, E. Bissaldi, M. Briggs, E. Burns, W. Cleveland, M. Gibby, M. Giles, et al. “The fourth fermi-gbm gamma-ray burst catalog: A decade of data”. In: The Astrophysical Journal 893.1 (2020), p. 46. doi: 10.3847/1538-4357/ab7a18.
[57] S. Woosley and J. Bloom. “The supernova–gamma-ray burst connection”. In: Annu. Rev. Astron. Astrophys. 44 (2006), pp. 507–556. doi: 10.1146/annurev. astro.43.072103.150558.
[58] D. Yonetoku, T. Murakami, T. Nakamura, R. Yamazaki, A. Inoue, and K. Ioka. “Gamma-ray burst formation rate inferred from the spectral peak energy-peak luminosity relation”. In: The Astrophysical Journal 609.2 (2004), p. 935. doi: 10.1086/421285.
[59] M. Yoneyama, J. Kataoka, M. Arimoto, T. Masuda, M. Yoshino, K. Kamada, A. Yoshikawa, H. Sato, and Y. Usuki. “Evaluation of GAGG:Ce scintillators for future space applications”. In: Journal of Instrumentation 13.2 (2018), P02023. doi: 10.1088/1748-0221/13/02/P02023.
[60] B.-B. Zhang, Z.-K. Liu, Z.-K. Peng, Y. Li, H.-J. Lu ̈, J. Yang, Y.-S. Yang, Y.-H. Yang, Y.-Z. Meng, J.-H. Zou, et al. “A peculiarly short-duration gamma-ray burst from massive star core collapse”. In: Nature Astronomy 5.9 (2021), pp. 911–916. doi: 10.1038/s41550-021-01395-z.
[61] Z. Zhang, C. Zhang, Y. Zhao, J. Luo, L. Jiang, X. Wang, X. Han, and R. Terheide. “Spectrum-energy Correlations in GRBs: Update, Reliability, and the Long/Short Dichotomy”. In: Publications of the Astronomical Society of the Pacific 130.987 (2018), p. 054202. doi: 10.1088/1538-3873/aaa6af.
[62] A. Zoglauer, R. Andritschke, and F. Schopper. “MEGAlib–the medium energy gamma-ray astronomy library”. In: New Astronomy Reviews 50.7-8 (2006), pp. 629–632. doi: 10.1016/j.newar.2006.06.049.
[63] A. Zoglauer, R. Andritschke, S. E. Boggs, F. Schopper, G. Weidenspointner, and C. B. Wunderer. “MEGAlib: simulation and data analysis for low-to-medium-energy gamma-ray telescopes”. In: Space Telescopes and Instrumentation 2008: Ultraviolet to Gamma Ray. Vol. 7011. SPIE. 2008, pp. 1041–1050. doi: 10. 1117/12.789537.