簡易檢索 / 詳目顯示

研究生: 吳維軒
Wu, Wei-Hsuan
論文名稱: 監控韋伯迴歸模型製程的多變量符號指數移動加權平均管制圖
Multivariate Sign EWMA Control Charts for Monitoring Weibull Regression Model Processes
指導教授: 黃榮臣
Huwang, Long-Cheen
口試委員: 王藝華
Wang, Yi-Hua
黃郁芬
Huang, Yu-Fen
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 60
中文關鍵詞: 可靠度多變量符號指數加權移動平均管制圖韋伯迴歸模型無母數位置-尺度族
外文關鍵詞: reliability, MSEWMA control charts, Weibull regression model, nonparametric, location-scale family
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在可靠度分析中,我們常使用韋伯分佈來描述產品的失效時間,而在本文中使用的韋伯迴歸模型即是將韋伯分佈的雙參數表示成共變數的迴歸式,這常用於加速壽命實驗上。本文是利用多變量符號指數加權移動平均管制圖來監控韋伯迴歸模型的製程。我們將透過統計模擬來評估多變量符號指數加權移動平均管制圖用於監控韋伯迴歸模型時的監控效率,以及改變點的估計與參數診斷的優劣。同時我們也探討在第一階段樣本組數不足時,多變量符號指數加權移動平均管制圖真正的平均連串長度是否可以達到名義的平均連串長度。最後我們透過一筆聚酯樹脂-聚氨酯絕緣材料的壽命資料,說明如何使用此管制圖來監控韋伯迴歸模型。


    In the reliability analysis, we often use the Weibull distribution to describe products' failure times. The Weibull regression model is to express the two parameters in terms of the covariates, which is often used in accelerated lifetime testing. In this article, we monitor the Weibull regression model process by multivariate sign EWMA control chart to ensure that products' lifetimes are stable. We use statistical simulations to evaluate monitoring efficiency, change point estimation and parameter diagnosis of the multivariate sign EWMA control chart which is used to monitor the Weibull regression model process. We also discuss whether the true ARL$_0$ of the multivariate sign EWMA control chart can achieve the nominal ARL$_0$ or not, when the number of Phase I samples is not large enough. Finally, we use mylar-polyurethane insulation lifetime data to illustrate how to apply the multivariate sign EWMA control chart to monitor the Weibull regression model process.

    第一章緒論 1 1.1 管制圖簡介 1 1.2 研究動機與目的 2 第二章監控韋伯迴歸模型 3 2.1 文獻回顧 4 2.2 製程改變點的估計 7 2.3 參數診斷 8 第三章統計模擬 10 3.1 MSEWMA 的管制界限 10 3.2 管制圖的比較 12 3.3 改變點的估計與參數診斷 14 3.4 第一階段樣本組數對管制圖的影響 16 第四章實例分析 18 第五章結論與未來研究 22 參考文獻 24 附表 26 附圖 59

    [1] Deming, W. E. and Edwards, D. W. (1982). Quality, productivity, and competitive position (Vol. 183). Cambridge, MA: Massachusetts Institute of Technology, Center for advanced engineering study.
    [2] Juran, J. M. and Bingham, R. S. (1974). Service industries. Quality control handbook, McGraw-Hill, New York, NY.
    [3] Kalkanis, G. and Rosso, E. (1989). The inverse power law model for the lifetime of a mylar-polyurethane laminated dc hv insulating structure. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 281(3), 489-496.
    [4] Lowry, C. A., Woodall, W. H., Champ, C. W. and Rigdon, S. E. (1992). A multivariate exponentially weighted moving average control chart. Technometrics, 34(1), 46-53.
    [5] Meeker, W. Q. and Escobar, L. A. (1998). Statistical Methods for Reliability Data. John Wiley and Sons, Inc.
    [6] Page, E. S. (1954). Continuous inspection schemes. Biometrics, 41(1/2), 100- 115.
    [7] Roberts, S.W. (1959). Control chart test based on geometric moving averages. Technometrics, 1(3), 234-250.
    [8] Shewhart, W. A. (1924). Some applications of statistical methods to the analysis of physical and engineering data. Bell System Technical Journal, 3(1), 43-87.
    [9] Zou, C. and Tsung, F. (2011). A multivariate sign EWMA control chart. Technometrics, 53(1), 84-97.

    QR CODE