簡易檢索 / 詳目顯示

研究生: 古采妮
Ku, Tsai-Ni
論文名稱: 氮化鋯鈦/氮化鈮奈米多層膜之磊晶生長對於薄膜機械性質與磨耗行為之影響
Nano-scale mechanical characteristics and tribological performance in epitaxial stabilization ZrTiN/NbN superlattice coatings
指導教授: 張守一
Chang, Shou-Yi
杜正恭
Duh, Jenq-Gong
口試委員: 李志偉
Lee, Jyh-Wei
張麗君
Chang, Li-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 80
中文關鍵詞: 過度金屬氮化物多層膜磊晶生長奈米尺度磨耗性質
外文關鍵詞: Transition metal nitride, superlattices, epitaxial stabilization, nano-scale tribological properties
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化物硬質薄膜擁有良好的機械性質、抗氧化性及耐磨耗等特性,近年來被廣泛應用於工業領域。然隨著科技的日新月異,對於硬質塗層的需求日漸嚴苛,除了需具備高硬度外,韌性逐漸成為硬質薄膜的要求,而要鍍製出高硬度且具備優異韌性的保護性硬膜著實屬一大挑戰。
    多層膜為利用兩種不同材料鍍製出具有週期性的結構,其中材料與材料間之介面可分散掉裂縫向下延伸的能量,以良好的保護基板材料。此外,多層膜的結構也比單層膜擁有較高的韌性。藉由特定的材料選擇,可觀察到磊晶生長的多層薄膜,並在調變雙層週期比例會有相變化的發生,而呈現不一樣的薄膜性質。
    本研究系利用真空磁控濺鍍之手法,製備不同雙層週期比例之氮化鋯鈦/氮化鈮多層薄膜,控制氮化鋯鈦之於氮化鈮比例介於2.7-0.4,觀察與氮化鈮的相變化如何影響薄膜之磊晶生長。再藉由奈米壓痕測試驗證因介面引入而得到的結構強化效果,並揭示出其中最適當的週期比例。在奈米尺度下的磨耗測試,觀察介面如何分散外界壓力表現出最佳的抗磨耗性質。於本研究中結果顯示,由於氮化鋯鈦/氮化鈮相近的晶格常數與楊氏係數,多層膜的硬度強化並不明顯,然多層膜之韌性則優異於單層氮化鋯鈦(K_c=3.22 MPa√m)及單層氮化鈮(K_c=2.70 MPa√m)。此外在奈米刮痕試驗中,刮痕過程中的曲線可觀察到階梯狀的形貌,象徵應力在遇到介面後被分散而達到保護基板的作用,而氮化鈮的相轉變則弱化薄膜的抗磨耗性質,主要係由於此相轉變破壞了原有的薄膜磊晶生長。


    Protective hard thin films have drawn extensive attention in modern industry under extreme condition. The design of high hardness and excellent toughness is great significant for expanding the application of transition nitride coatings. In this regard, epitaxial stabilization superlattices have been proposed as a potential candidate. The ZrTiN/NbN system was designed owing to the similar crystal structure and lattice parameter. Thus, the relationship between epitaxial grain growth and thickness of sub-layer were clearly studied. In this work, all coatings were deposited via RF magnetron sputtering. Superlattices with four different thickness ratio of individual layers were designed while bilayer period was fixed at 8 nm. The microstructure and tribological performance of superlattices were investigated by the characterization of chemical composition, crystal structure, and mechanical properties.
    It has been found that metastable cubic NbN transforms to the stable hexagonal structure with the NbN component layer thicker than 3 nm, since NbN possesses higher valence electron concentration (VEC). HRTEM images revealed that the existence of h-NBN resulted in the loss of coherent growth, thereby showing the polycrystalline structure in SAED. The superlattices demonstrated no radical cracks after indentation. It is obvious that superlattices possessed stronger crack resistance than ZrTiN (K_c=3.22 MPa√m) and NbN (K_c=2.70 MPa√m) monolithic films.
    Superlattices exhibited the staircase deformation during scratching. It was argued that the wear volume of superlattices was remarkably lower than monolayers, however, the formation of h-NbN was the reason deteriorating the wear resistance of the coatings. To sum up, epitaxial ZrTiN/c-NbN superlattices exhibited not only excellent mechanical behavior but also favorable tribological performance.

    Abstract III Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and Objectives 4 Chapter 2 Literature Review 5 2.1 Surface Engineering 5 2.2 Sputtering Technique 8 2.3 Superlattices 15 2.3.1 Strengthening mechanism 15 2.3.2 Toughening mechanism 23 2.4 Material selection 25 2.4.1 ZrTiN 25 2.4.2 NbN 25 2.5 Nano-scale measurement techniques 26 2.5.1 Nanoindentation 26 2.5.2 Nanoscratch 31 2.5.3 Nanowear 34 Chapter 3 Experimental Procedures 36 3.1 Sample preparations 36 3.2 Deposition of ZrTiN/NbN superlattice coatings 37 3.3 Measurement and Analysis 38 3.3.1 Element Composition Analysis 38 3.3.2 Crystallographic Identification 38 3.3.3 Microstructure Analysis 38 3.3.4 Mechanical Properties Evaluation 39 3.3.5 Nano-scale Tribological Performance Evaluation 39 Chapter 4 Results and Discussions 44 4.1 Chemical composition 44 4.2 Microstructure 46 4.2.1 SEM cross-section images 46 4.2.2 TEM images 46 4.3 XRD identification 51 4.4 Intrinsic mechanical properties 58 4.4.1 Hardness and elastic modulus 58 4.4.2 Fracture Toughness 60 4.5 Nano-scale tribological performance 62 4.5.1 Nanoscratch 62 4.5.2 Nanowear 67 Chapter 5 Conclusion 71 References 72

    [1] Y.X. Wang, S. Zhang, Toward hard yet tough ceramic coatings, Surf. Coat. Technol. 258 (2014) 1-16.
    [2] L. Wang, J. Qi, Y. Cao, K. Zhang, Y. Zhang, J. Hao, P. Ren, M. Wen, N-rich Zr3N4 nanolayers-dependent superhard effect and fracture behavior in TiAlN/Zr3N4 nanomultilayer films, Ceram. Int. 46(11) (2020) 19111-19120.
    [3] T.-C. Huang, S.-Y. Hsu, Y.-T. Lai, S.-Y. Tsai, J.-G. Duh, Effect of NiTi metallic layer thickness on scratch resistance and wear behavior of high entropy alloy (CrAlNbSiV) nitride coating, Surf. Coat. Technol. 425 (2021) 127713.
    [4] B. Clemens, H. Kung, S. Barnett, Structure and strength of multilayers, MRS Bull. 24(2) (1999) 20-26.
    [5] Y. Ou, X. Ouyang, B. Liao, X. Zhang, S. Zhang, Hard yet tough CrN/Si3N4 multilayer coatings deposited by the combined deep oscillation magnetron sputtering and pulsed dc magnetron sputtering, Appl. Surf. Sci. 502 (2020) 144168.
    [6] A. Pogrebnjak, M.A. Lisovenko, A. Turlybekuly, V.V. Buranich, Protective coatings with nanoscale multilayer architecture: current state and main trends, Phys. Usp. 64(3) (2021) 253.
    [7] C. Bîrleanu, M. Pustan, F. Șerdean, V. Merie, AFM Nanotribomechanical Characterization of Thin Films for MEMS Applications, Micromachines 13(1) (2021) 23.
    [8] B. Bhushan, Nanomechanical Characterization of Solid Surfaces and Thin Films, Nanotribology and nanomechanics, Springer2017, pp. 177-251.
    [9] J.W. Judy, Microelectromechanical systems (MEMS): fabrication, design and applications, Smart Mater. Struct. 10(6) (2001) 1115.
    [10] a. Staff, YOLE Group Offers Snapshot of MEMS Sensors and Actuators Market and Projects Trends for 2023, 2022.
    [11] C. Ziebert, S. Ulrich, Hard multilayer coatings containing TiN and/or ZrN: A review and recent progress in their nanoscale characterization, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 24(3) (2006) 554-583.
    [12] S.-Y. Hsu, Y.-T. Lai, S.-Y. Chang, S.-Y. Tsai, J.-G. Duh, Combinatorial synthesis of reactively co-sputtered high entropy nitride (HfNbTiVZr) N coatings: Microstructure and mechanical properties, Surf. Coat. Technol. (2022) 128564.
    [13] K. Balasubramanian, S.V. Khare, D. Gall, Valence electron concentration as an indicator for mechanical properties in rocksalt structure nitrides, carbides and carbonitrides, Acta Mater. 152 (2018) 175-185.
    [14] J. Tan, S. Zhang, S. Wang, W. Wang, X. Zheng, J. Zhao, W. Li, X. Mao, K. Liu, X. Zhou, Stoichiometric δ‐NbN: The Most Incompressible Cubic Transition Metal Mononitride, physica status solidi (b) 254(11) (2017) 1700063.
    [15] N. Koutná, Superlattice design for nitride-based thin films, Wien, 2021.
    [16] W. Gissler, H.A. Jehn, Advanced techniques for surface engineering, Springer Science & Business Media1992.
    [17] T. Vieira, J. Castanho, C. Louro, Hard coatings based on metal nitrides, metal carbides and nanocomposite materials: PVD process and properties, Materials Surface Processing by Directed Energy Techniques, Elsevier2006, pp. 537-572.
    [18] O.O. Abegunde, E.T. Akinlabi, O.P. Oladijo, S. Akinlabi, A.U. Ude, Overview of thin film deposition techniques, AIMS Materials Science 6(2) (2019) 174-199.
    [19] U. Schleinkofer, C. Czettl, C. Michotte, Coating applications for cutting tools, (2014).
    [20] K. Holmberg, A. Matthews, Coatings tribology: properties, mechanisms, techniques and applications in surface engineering, Elsevier2009.
    [21] O. Knotek, F. Löffler, G. Krämer, Multicomponent and multilayer physically vapour deposited coatings for cutting tools, Surf. Coat. Technol. 54-55 (1992) 241-248.
    [22] N. Pandey, S. Tripathi, B. Kumar, D.K. Dwivedi, Thin Film Deposition and Characterization for Various Applications, 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), 2018, pp. 1-6.
    [23] L. Santo, Surface Engineering Techniques and Applications: Research Advancements: Research Advancements, IGI Global2014.
    [24] K. Strijckmans, R. Schelfhout, D. Depla, Tutorial: Hysteresis during the reactive magnetron sputtering process, J. Appl. Phys. 124(24) (2018) 241101.
    [25] N. Jain, M. Sawant, S. Nikam, S. Jhavar, Metal Deposition: Plasma-Based Processes, 2016, p. 19.
    [26] C.-T. Liu, M.-C. Lai, C.-C. Hwang, C.-H. Tu, L.-Y. Liu, Y.-W. Hsu, Enhancements of substrate deposition rate and target erosion profile in a dc magnetron sputtering system, IEEE Trans. Magn. 45(10) (2009) 4391-4394.
    [27] P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum 56(3) (2000) 159-172.
    [28] E. Alfonso, J. Olaya, G. Cubillos, Thin film growth through sputtering technique and its applications, Crystallization-Science and technology 23 (2012) 11-12.
    [29] M.M. Waite, S.I. Shah, Target poisoning during reactive sputtering of silicon with oxygen and nitrogen, Materials Science and Engineering: B 140(1) (2007) 64-68.
    [30] L.-Y. Chen, W.-H. Chen, J.-J. Wang, F.C.-N. Hong, Y.-K. Su, Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering, Appl. Phys. Lett. 85(23) (2004) 5628-5630.
    [31] D.-S. Wang, S.-Y. Chang, Y.-C. Huang, J.-B. Wu, H.-J. Lai, M.-S. Leu, Reduced roughness and enhanced mechanical properties of multilayered diamond-like carbon films by periodic arc deposition, J. Electrochem. Soc. 159(6) (2012) P51.
    [32] M. Panjan, S. Šturm, P. Panjan, M. Čekada, TEM investigation of TiAlN/CrN multilayer coatings prepared by magnetron sputtering, Surf. Coat. Technol. 202(4-7) (2007) 815-819.
    [33] X. Chu, S.A. Barnett, Model of superlattice yield stress and hardness enhancements, J. Appl. Phys. 77(9) (1995) 4403-4411.
    [34] L. Hultman, Synthesis, structure, and properties of superhard superlattice coatings, Nanostructured coatings, Springer2006, pp. 539-554.
    [35] P.C. Yashar, W.D. Sproul, Nanometer scale multilayered hard coatings, Vacuum 55(3) (1999) 179-190.
    [36] J. Koehler, Attempt to design a strong solid, Physical review B 2(2) (1970) 547.
    [37] S. Lehoczky, Retardation of dislocation generation and motion in thin-layered metal laminates, Physical Review Letters 41(26) (1978) 1814.
    [38] S. Lehoczky, Strength enhancement in thin‐layered Al‐Cu laminates, Journal of Applied Physics 49(11) (1978) 5479-5485.
    [39] M. Shinn, S. Barnett, Effect of superlattice layer elastic moduli on hardness, Applied Physics Letters 64(1) (1994) 61-63.
    [40] W.D.S. P.C. Yashar, Nanometer scale multilayered hard coatings, Vacuum 55 (1999) 179-190.
    [41] J.W. Cahn, Hardening by spinodal decomposition, Symposium on the role of substructure in the mechanical behavior of metals, 1963, p. 375.
    [42] M. Shinn, L. Hultman, S. Barnett, Growth, structure, and microhardness of epitaxial TiN/NbN superlattices, J. Mater. Res. 7(4) (1992) 901-911.
    [43] L. Chen, Y.X. Xu, Y. Du, Y. Liu, Effect of bilayer period on structure, mechanical and thermal properties of TiAlN/AlTiN multilayer coatings, Thin Solid Films 592 (2015) 207-214.
    [44] M. Pfeiler-Deutschmann, P.H. Mayrhofer, K. Chladil, M. Penoy, C. Michotte, M. Kathrein, C. Mitterer, Effect of wavelength modulation of arc evaporated Ti–Al–N/Ti–Al–V–N multilayer coatings on microstructure and mechanical/tribological properties, Thin Solid Films 581 (2015) 20-24.
    [45] M. Schlögl, C. Kirchlechner, J. Paulitsch, J. Keckes, P.H. Mayrhofer, Effects of structure and interfaces on fracture toughness of CrN/AlN multilayer coatings, Scr. Mater. 68(12) (2013) 917-920.
    [46] M. Fallmann, Z. Chen, Z. Zhang, P. Mayrhofer, M. Bartosik, Mechanical properties and epitaxial growth of TiN/AlN superlattices, Surf. Coat. Technol. 375 (2019) 1-7.
    [47] M. Wen, H. Huang, K. Zhang, Q. Meng, X. Li, X. Zhang, L. Kong, W. Zheng, Effects of modulation periodicity on microstructure, mechanical and tribological properties of NbN/AlN nanostructured multilayer films, Appl. Surf. Sci. 284 (2013) 331-339.
    [48] F. Mei, N. Shao, L. Wei, Y. Dong, G. Li, Coherent epitaxial growth and superhardness effects of c‐TiN∕ h‐TiB 2 nanomultilayers, Appl. Phys. Lett. 87(1) (2005) 011906.
    [49] J. Buchinger, A. Wagner, Z. Chen, Z.L. Zhang, D. Holec, P.H. Mayrhofer, M. Bartosik, Fracture toughness trends of modulus-matched TiN/(Cr,Al)N thin film superlattices, Acta Mater. 202 (2021) 376-386.
    [50] P. Fratzl, H.S. Gupta, F.D. Fischer, O. Kolednik, Hindered crack propagation in materials with periodically varying Young's modulus—lessons from biological materials, Adv. Mater. 19(18) (2007) 2657-2661.
    [51] M. Sistaninia, O. Kolednik, Effect of a single soft interlayer on the crack driving force, Eng. Fract. Mech. 130 (2014) 21-41.
    [52] O. Kolednik, J. Predan, F.D. Fischer, P. Fratzl, Bioinspired design criteria for damage‐resistant materials with periodically varying microstructure, Adv. Funct. Mater. 21(19) (2011) 3634-3641.
    [53] M.-S. Wong, G.-Y. Hsiao, S.-Y. Yang, Preparation and characterization of AlN/ZrN and AlN/TiN nanolaminate coatings, Surf. Coat. Technol. 133-134 (2000) 160-165.
    [54] J. Musil, I. Štěpánek, J. Musil Jr, M. Kolego, O. Blahova, J. Vyskočil, J. Kasl, Properties of TiN, ZrN and ZrTiN coatings prepared by cathodic arc evaporation, Materials Science and Engineering: A 163(2) (1993) 211-214.
    [55] G. Abadias, L. Koutsokeras, S. Dub, G. Tolmachova, A. Debelle, T. Sauvage, P. Villechaise, Reactive magnetron cosputtering of hard and conductive ternary nitride thin films: Ti–Zr–N and Ti–Ta–N, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 28(4) (2010) 541-551.
    [56] M. Larsson, P. Hollman, P. Hedenqvist, S. Hogmark, U. Wahlström, L. Hultman, Deposition and microstructure of PVD TiN NbN multilayered coatings by combined reactive electron beam evaporation and DC sputtering, Surf. Coat. Technol. 86 (1996) 351-356.
    [57] H. Kindlund, D. Sangiovanni, I. Petrov, J.E. Greene, L. Hultman, A review of the intrinsic ductility and toughness of hard transition-metal nitride alloy thin films, Thin Solid Films 688 (2019) 137479.
    [58] B. Bhushan, Depth-sensing nanoindentation measurement techniques and applications, Microsyst. Technol. 23(5) (2017) 1595-1649.
    [59] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7(6) (1992) 1564-1583.
    [60] Y.-C. Huang, S.-Y. Chang, C.-H. Chang, Effect of residual stresses on mechanical properties and interface adhesion strength of SiN thin films, Thin Solid Films 517(17) (2009) 4857-4861.
    [61] S.W. Moore, M.T. Manzari, Y.-L. Shen, Nanoindentation in elastoplastic materials: insights from numerical simulations, International Journal of Smart and Nano Materials 1(2) (2010) 95-114.
    [62] K.P. Marimuthu, J. Han, U. Jeong, K. Lee, H. Lee, Study on tribological characteristics of Zr-based BMG via nanoscratch techniques, Wear 486 (2021) 204067.
    [63] M. Chowdhury, B. Bose, K. Yamamoto, L. Shuster, J. Paiva, G. Fox-Rabinovich, S. Veldhuis, Wear performance investigation of PVD coated and uncoated carbide tools during high-speed machining of TiAl6V4 aerospace alloy, Wear 446 (2020) 203168.
    [64] M. Zawischa, S. Makowski, N. Schwarzer, V. Weihnacht, Scratch resistance of superhard carbon coatings–A new approach to failure and adhesion evaluation, Surf. Coat. Technol. 308 (2016) 341-348.
    [65] S. Banday, M. Wani, Nanoscratch resistance and nanotribological performance of Ti/MoS2 coating on Al-Si alloy deposited by pulse laser deposition technique, J. Tribol. 141(2) (2019) 022003.
    [66] S.-Y. Chang, Y.-S. Lee, Analyses of interface adhesion between Cu and SiCN etch stop layers by nanoindentation and nanoscratch tests, Jpn. J. Appl. Phys. 46(4S) (2007) 1955.
    [67] Y. Akimune, T. Akiba, N. Hirosaki, T. Izumi, Impact damage behaviour of CVD-coated silicon nitride for gas turbines, J. Mater. Sci. 29(12) (1994) 3243-3247.
    [68] E. Martınez, J. Andújar, M. Polo, J. Esteve, J. Robertson, W. Milne, Study of the mechanical properties of tetrahedral amorphous carbon films by nanoindentation and nanowear measurements, Diamond Relat. Mater. 10(2) (2001) 145-152.
    [69] A. Chatterjee, A.A. Polycarpou, J.R. Abelson, P. Bellon, Nanoscratch study of hard HfB2 thin films using experimental and finite element techniques, Wear 268(5) (2010) 677-685.
    [70] S. Izadi, H. Mraied, W. Cai, Tribological and mechanical behavior of nanostructured Al/Ti multilayers, Surf. Coat. Technol. 275 (2015) 374-383.
    [71] M. Nasim, Y. Li, M. Wen, C. Wen, High-strength Ni/Al nanolaminates fabricated by magnetron sputtering and their nanoindentation and nanowear behaviors, Materialia 6 (2019) 100263.
    [72] X. Li, B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications, Mater. Charact. 48(1) (2002) 11-36.
    [73] S. PalDey, S.C. Deevi, Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review, Materials Science and Engineering: A 342(1) (2003) 58-79.
    [74] A. Pogrebnjak, K. Smyrnova, O. Bondar, Nanocomposite multilayer binary nitride coatings based on transition and refractory metals: Structure and properties, Coatings 9(3) (2019) 155.
    [75] H. Kindlund, J. Lu, J. Jensen, I. Petrov, J.E. Greene, L. Hultman, Epitaxial V0. 6W0. 4N/MgO (001): Evidence for ordering on the cation sublattice, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 31(4) (2013) 040602.
    [76] M.B. Kanoun, S. Goumri-Said, Effect of alloying on elastic properties of ZrN based transition metal nitride alloys, Surf. Coat. Technol. 255 (2014) 140-145.
    [77] X.-J. Chen, V.V. Struzhkin, Z. Wu, M. Somayazulu, J. Qian, S. Kung, A.N. Christensen, Y. Zhao, R.E. Cohen, H.-k. Mao, Hard superconducting nitrides, Proceedings of the National Academy of Sciences 102(9) (2005) 3198-3201.
    [78] J. Musil, Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness, Surf. Coat. Technol. 207 (2012) 50-65.
    [79] B.R. Lawn, A.G. Evans, D. Marshall, Elastic/plastic indentation damage in ceramics: the median/radial crack system, J. Am. Ceram. Soc. 63(9‐10) (1980) 574-581.
    [80] O. Kolednik, J. Predan, F.D. Fischer, P. Fratzl, Improvements of strength and fracture resistance by spatial material property variations, Acta Mater. 68 (2014) 279-294.
    [81] E. Bemporad, M. Sebastiani, M. Staia, E.P. Cabrera, Tribological studies on PVD/HVOF duplex coatings on Ti6Al4V substrate, Surf. Coat. Technol. 203(5-7) (2008) 566-571.
    [82] Z.-z. Wang, P. Gu, X.-p. Wu, H. Zhang, Z. Zhang, M.Y. Chiang, Micro/nano-wear studies on epoxy/silica nanocomposites, Compos. Sci. Technol. 79 (2013) 49-57.
    [83] T.-N. Ku, S.-Y. Hsu, Y.-T. Lai, S.-Y. Chang, S.-Y. Tsai, J.-G. Duh, Nano-scale mechanical characteristics of epitaxial stabilization ZrTiN/NbN superlattice coatings, Surf. Coat. Technol. 453 (2023) 129123.

    QR CODE