簡易檢索 / 詳目顯示

研究生: 李俐瑩
Li, Li-Ying
論文名稱: 溫度敏感型胺基酸水膠包覆胰腺β細胞在組織工程上之應用
Thermosensitive Polypeptide Hydrogel encapsulated Pancreatic β cell for Tissue Engineering Application
指導教授: 朱一民
Chu, I-Ming
口試委員: 黃振煌
Huang, Chen-Huang
林世傑
Lin, Shih Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 57
中文關鍵詞: 胺基酸水膠溫度敏感型原位成膠胰島素
外文關鍵詞: polypeptide hydrogel, temperature sensitive, in situ gelation, insulin
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究將甲基化聚乙二醇 (methoxy-poly(ethyleneglycol), mPEG) 之 -OH端改質成 -NH2,再共聚合上左旋丙胺酸 (ʟ-alanine),形成一兩嵌段共聚物mPEG-polyalanine (mPEG-PA),作為可應用於原位成膠之溫度敏感型胺基酸水膠。希望藉由材料之親疏水性質,提供良好之生長環境來促使細胞貼附,並藉由分析膠體性質及成膠機制,探討此膠體做為移植細胞的支架材料之潛力。
      將此溫度敏感型胺基酸水膠以(_^1)H核磁共振光譜儀 ((_^1)H-NMR)、傅立葉轉換反射式紅外線光譜儀 (ATR-FTIR)、凝膠滲透層析儀 (GPC)、流變儀與掃描式電子顯微鏡 (SEM) 分析其各種性質及成膠溫度。接著探討材料對細胞毒性、水膠與細胞共培養之生物相容性,由MTT assay結果可以看到細胞存活率皆維持在90 % 以上;再來則進行胰腺 β cell功能性之體外測試,藉由酵素免疫分析法 (ELISA) 及即時定量聚合酶鏈式反應 (qRT-PCR) 確認β cell在包覆於水膠後,仍具有胰島素分泌的功能。
      本研究最終期望開發一溫度敏感型胺基酸水膠,具有可注射、原位成膠以及良好之生物相容性等特性,成為具有優勢之組織工程的細胞支架,並使用此溫度敏感型胺基酸水膠mPEG-poly(alanine)作為胰島皮下移植的封裝材料,成為糖尿病治療之手段。


      In this study, we report the synthesis and characterization of a temperature-sensitive polypeptide hydrogel. The -OH end of methoxy-poly(ethylene glycol) (mPEG) was modified to -NH2. Then, ʟ -alanine was co-polymerized with mPEG at the end of N-terminal of mPEG to form a two-block copolymer mPEG-poly(alanine) (mPEG-PA). The hydrogel can be used for in-situ gelation. After that, we explores the potential of this hydrogel as a cell scaffold application by analyzing gelation properties.
      On the basis of the result of (_^1)H nuclear magnetic resonance spectrometer ((_^1)H-NMR) , Fourier transform reflective infrared spectrometer (ATR-FTIR), gel permeation chromatography (GPC), sol-to-gel transition, rheometer and scanning electron microscope (SEM) studies, the molecular weight and gelation properties of the hydrogel are determined. Furthermore, MIN6 β-cells were encapsulated in the hydrogel to observe the cell viability. By MTT assay, the cell viability may be reached above 90%. In order to confirm the insulin secretion, pancreatic β cells in vitro were demonstrated by enzyme immunoassay (ELISA) and quantitative real time polymerase chain reaction (qRT-PCR).
      Overall, we show a strategy to modify mPEG hydrogel with bioactive polypeptide and use the thermosensitive methoxy-poly(ethylene glycol)- poly(alanine) (mPEG-PA) hydrogel as cell-encapsulating materials for the subcutaneous transplantation of pancreatic β cells. The thermosensitive hydrogel will be looked forwarded to act as a superior cell scaffold for local treatment.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 ix 壹 文獻回顧與探討 1 2.1水膠介紹 1 2.1-1水膠的類型與特性 1 2.1-2水膠在組織工程上之應用 5 2.2胰臟與糖尿病 8 2.2-1胰臟的基本功能 8 2.2-2胰島素的分泌與作用 9 2.2-3糖尿病的病理機制 12 2.2-4糖尿病現行療法 14 貳 研究動機與目的 19 參 研究方法及步驟 20 3.1實驗藥品 20 3.2實驗器材 21 3.3 mPEG-poly(ʟ-alanine)嵌段共聚物製備 22 3.3-1 mPEG末端改質(-OH基→-NH2基) 22 3.3-2丙胺酸環化反應(N-carboxyl anhydride of ʟ-alanine, NCA-Ala) 23 3.3-3 mPEG-poly(ʟ-alanine)開環聚合反應 23 3.4 mPEG-poly(ʟ-alanine)嵌段共聚物之鑑定分析 24 3.4-1 核磁共振光譜儀(1H-NMR) 24 3.4-2 凝膠滲透層析儀(Gel Permeation Chromatography, GPC) 25 3.4-3 溶膠-凝膠相轉變測試(Sol-gel transition) 25 3.4-4 流變儀(Rheology) 25 3.4-5 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 26 3.5 水膠之生物相容性(Biocompatibility of hydrogel) 26 3.5-1 細胞培養(Cell culture) 26 3.5-2 水膠與細胞共培養(Cell cultured with hydrogel) 27 3.6 細胞之功能性體外測試(Functional test of cells in vitro) 29 3.6-1 酵素免疫分析法(Enzyme-linked immunosorbent assay, ELISA) 29 3.6-2 定量即時聚合酶鏈式反應(Quantitative Real Time Polymerase Chain Reaction, qRT-PCR) 30 肆 實驗結果與討論 33 4.1 mPEG-poly(ʟ-alanine)嵌段共聚物之鑑定分析 33 4.1-1 共聚物單體結構分析 33 4.1-2 共聚物分子量分析 34 4.1-3 溶膠-凝膠相轉變測試 35 4.1-4 流變性質測試 36 4.1-5 共聚物三維結構分析 37 4.2水膠生物相容性之培養分析 38 4.3細胞之功能性體外測試 40 4.3-1 胰島素分泌能力 40 4.3-2 胰島素分泌相關基因表現 43 伍 結論 46 六 未來展望 48 陸 參考文獻 51 附錄 55

    1. Wichterle, O. and D. LÍM, Hydrophilic Gels for Biological Use. Nature, 1960. 185(4706): p. 117-118.
    2. Lim, F. and A. Sun, Microencapsulated islets as bioartificial endocrine pancreas. Science, 1980. 210(4472): p. 908-910.
    3. I V Yannas, E.L., D P Orgill, E M Skrabut, and G F Murphy, Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proceedings of the National Academy of Sciences of the United States of America, 1989. 86(3): p. 933-937.
    4. Kokkarachedu Varaprasad 1, G.M.R., Tippabattini Jayaramudu 3, Murali Mohan Yallapu 4, Rotimi Sadiku 5, A mini review on hydrogels classification and recent developments in miscellaneous applications. Materials Science and Engineering: C, 2017. 79: p. 958-971.
    5. Qiu, Y. and K. Park, Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 2001. 53(3): p. 321-339.
    6. Caló, E. and V.V. Khutoryanskiy, Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 2015. 65: p. 252-267.
    7. Ding, L.Y.G.C.H.Z.J., Temperature‐induced spontaneous sol–gel transitions of poly (d, l‐lactic acid‐co‐glycolic acid)‐b‐poly (ethylene glycol)‐b‐poly (d, l‐lactic acid‐co‐glycolic acid) triblock copolymers and their end‐capped derivatives in water. Journal of Polymer Science Part A: Polymer Chemistry, 2007. 45(6): p. 1122-1133.
    8. Nowsheen Goonoo 1, A.B.-L., Reetesh Ujoodha 1, Anil Jhugroo 2, Gary K Hulse 3, Dhanjay Jhurry 4, Naltrexone: A review of existing sustained drug delivery systems and emerging nano-based systems. Journal of Controlled Release, 2014. 183: p. 154-166.
    9. Lee, K.Y. and D.J. Mooney, Hydrogels for Tissue Engineering. Chemical Reviews, 2001. 101(7): p. 1869-1880.
    10. Chapekar, M.S., Tissue engineering: Challenges and opportunities. Journal of Biomedical Materials Research, 2000. 53(6): p. 617-620.
    11. JABBARI, E., M. YASZEMSKI, J, and B. CURRIER, L, EP 1 664 168 B1. 2006.
    12. Harris, H., Brown LJ, Gosiewska A, US Patent 8,039,258 B2. 2011.
    13. J Chen 1, W.E.B., H Park, K Park, Gastric retention properties of superporous hydrogel composites. Journal of Controlled Release, 2000. 64(1): p. 39-51.
    14. Ph.D, D.W. and J.B. Ph.D, Human Biology. 2015: CK-12 Foundation.
    15. Paul, L., Beiträge zur mikroskopischen Anatomie der Bauchspeicheldrüse : Inaugural-Dissertaton, zur Erlangung der Doctorwürde in der Medicin und Chirurgie vorgelegt der Medicinischen Facultät der Friedrich-Wilhelms-Universität zu Berlin. 1869.
    16. Elayat, A.A., M.M. el-Naggar, and M. Tahir, An immunocytochemical and morphometric study of the rat pancreatic islets. Journal of anatomy, 1995. 186 ( Pt 3)(Pt 3): p. 629-637.
    17. Over Cabrera, D.M.B., Norma S. Kenyon, Camillo Ricordi, Per-Olof Berggren, and Alejandro Caicedo, The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(7): p. 2334-2339.
    18. Marcela Brissova 1, M.J.F., Wendell E Nicholson, Anita Chu, Boaz Hirshberg, David M Harlan, Alvin C Powers, Assessment of Human Pancreatic Islet Architecture and Composition by Laser Scanning Confocal Microscopy. Journal of Histochemistry & Cytochemistry, 2005. 53(9): p. 1087-1097.
    19. Joshi, S.R., R.M. Parikh, and A.K. Das, Insulin--history, biochemistry, physiology and pharmacology. J Assoc Physicians India, 2007. 55 Suppl: p. 19-25.
    20. T Lorenzen 1, F.P., P Hougaard, J Nerup, Long-term risk of IDDM in first-degree relatives of patients with IDDM. Diabetologia, 1994. 37(3): p. 321-327.
    21. Ionescu-Tîrgovişte, C., P.A. Gagniuc, and C. Guja, Structural properties of gene promoters highlight more than two phenotypes of diabetes. PloS one, 2015. 10(9): p. e0137950.
    22. Mikael Knip 1, R.V., Suvi M Virtanen, Heikki Hyöty, Outi Vaarala, Hans K Akerblom, Environmental Triggers and Determinants of Type 1 Diabetes. Diabetes, 2005. 54(suppl 2): p. S125.
    23. Pociot, F. and Å. Lernmark, Genetic risk factors for type 1 diabetes. The Lancet, 2016. 387(10035): p. 2331-2339.
    24. F Vauzelle-Kervroëdan 1, C.D., A Forhan, E Jougla, F Hatton, L Papoz, Analysis of mortality in French diabetic patients from death certificates: a comparative study. Diabetes Metab, 1999. 25(5): p. 404-11.
    25. Tasker, R.C., Cerebral edema in children with diabetic ketoacidosis: vasogenic rather than cellular? Pediatric Diabetes. 2014. 15: 261-270.
    26. Risérus, U., W.C. Willett, and F.B. Hu, Dietary fats and prevention of type 2 diabetes. Progress in lipid research, 2009. 48(1): p. 44-51.
    27. Herder, C. and M. Roden, Genetics of type 2 diabetes: pathophysiologic and clinical relevance. European journal of clinical investigation, 2011. 41(6): p. 679-692.
    28. Tae Hun Kim 1, K.L., Ie Byung Park 2, Cheol Soo Choi 2, Tae Hoon Ahn 3, Dae Ho Lee 4, The effects of DPP4 inhibitors on the levels of plasma catecholamines and their metabolites in patients with type 2 diabetes. Diabetes Research and Clinical Practice, 2019. 156: p. 107832.
    29. Ralph A. DeFronzo, E.F., Leif Groop, Robert R. Henry, William H. Herman, Jens Juul Holst, Frank B. Hu, C. Ronald Kahn, Itamar Raz, Gerald I. Shulman, Donald C. Simonson, Marcia A. Testa & Ram Weiss Type 2 diabetes mellitus. Nature Reviews Disease Primers, 2015. 1(1): p. 15019.
    30. Donovan, P.J. and H.D. McIntyre, Drugs for gestational diabetes. Australian prescriber, 2010. 33(5).
    31. William C Knowler 1, E.B.-C., Sarah E Fowler, Richard F Hamman, John M Lachin, Elizabeth A Walker, David M Nathan, Diabetes Prevention Program Research Group, Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England journal of medicine, 2002. 346(6): p. 393-403.
    32. Vijan, S., Type 2 Diabetes. Annals of Internal Medicine, 2010. 152(5): p. ITC3-1-ITC3-1.
    33. Andrea D Smith 1 2, A.C., James Woodcock 4, Søren Brage 5, Physical activity and incident type 2 diabetes mellitus: a systematic review and dose-response meta-analysis of prospective cohort studies. Diabetologia, 2016. 59(12): p. 2527-2545.
    34. P Soon-Shiong, E.F., R Nelson, R Heintz, Q Yao, Z Yao, T Zheng, N Merideth, G Skjak-Braek, T Espevik, Long-term reversal of diabetes by the injection of immunoprotected islets. Proceedings of the National Academy of Sciences, 1993. 90(12): p. 5843-5847.
    35. A M Shapiro 1, J.R.L., E A Ryan, G S Korbutt, E Toth, G L Warnock, N M Kneteman, R V Rajotte, Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. New England Journal of Medicine, 2000. 343(4): p. 230-238.
    36. W C Knowler 1, K.M.N., R L Hanson, R G Nelson, P H Bennett, J Tuomilehto, B Scherstén, D J Pettitt, Preventing non-insulin-dependent diabetes. Diabetes, 1995. 44(5): p. 483-488.
    37. Group, T.D.P.P.R., The Diabetes Prevention Program. Design and methods for a clinical trial in the prevention of type 2 diabetes. Diabetes care, 1999. 22(4): p. 623-634.
    38. Michael D Menger, S.J., Paul Walter, Gernot Feifel, Frithjof Hammersen and Konrad Messmer, Angiogenesis and Hemodynamics of Microvasculature of Transplanted Islets of Langerhans. Diabetes, 1989. 38(Supplement 1): p. 199.
    39. Wiseman, A.C., Immunosuppressive Medications. Clinical journal of the American Society of Nephrology : CJASN, 2016. 11(2): p. 332-343.
    40. Davies, T.F., Cocultures of Human Thyroid Monolayer Cells and Autologous T Cells: Impact of HLA Class II Antigen Expression*. The Journal of Clinical Endocrinology & Metabolism, 1985. 61(3): p. 418-422.

    QR CODE