簡易檢索 / 詳目顯示

研究生: 劉淑雅
論文名稱: 一、水相合成具系統性形狀演繹之鈀奈米晶體及其晶面催化活性 二、水相中以一鍋方式製備銅奈米粒子
1.Aqueous Solution Synthesis of Palladium Nanocrystals with Systematic Shape Evolution and Their Facet-Dependent Catalytic Activity 2.One-Pot Synthesis of Copper Nanoparticles in Aqueous Solution
指導教授: 黃暄益
口試委員: 吳文偉
段興宇
黃暄益
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 108
中文關鍵詞: 鈀奈米晶體晶面催化活性銅奈米粒子
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一、水相合成具系統性形狀演繹之鈀奈米晶體及其晶面催化活性
    具數十奈米大小尺寸之鈀八面體、截角八面體、截半立方體、截角立方體及立方體已可透過四氯合鈀酸、氯化十六烷基三甲基胺鹽、維生素C、溴化鉀及碘化鉀於 35 ℃ 之水相中反應 30 分鐘獲得。經由調節溴化鉀的使用量,可實現奈米粒子形狀的控制。若調整所加入之鈀前驅物及溴化鉀溶液體積,將可獲得具有優異的形狀控制且不同尺寸之鈀奈米晶體,並鑑定上述之鈀奈米粒子其結構及光學特性。而凹面鈀立方體也可透過類似的方法製備。相較於鈀八面體,我們發現鈀立方體以更快的生長速度形成。當鈀立方體,八面體,以及截半立方體被用來作為辻-特羅斯特烯丙基胺化反應中以形成碳氮鍵的催化劑時,其中鈀立方體可以選擇性獲得烯丙基苯胺或二烯丙基苯胺。此實驗中,鈀立方體及八面體皆可以用來催化胺化反應,然而立方體卻具有最佳的催化效率、產率及產物的選擇性。

    二、水相中一鍋方式製備銅奈米粒子
    本實驗透過一鍋式反應於 110 ℃下反應兩小時即可獲得銅奈米粒子。所使用到的反應物為硫酸銅、十六胺、維生素C及鹽酸。透過調整所加入之鹽酸可獲得六足體、立方體及奈米線形狀的銅奈米粒子。所合成出的銅立方體平均邊長長度為 150 奈米,奈米線平均直徑為 56 奈米。經由酸溶液的加入,會促使{100}晶面的生成,使奈米粒子形貌由六足體演化至立方體。此外,我們也透過使用氯化十六烷基三甲基胺鹽及抗壞血酸鈉做為反應物合成銅奈米粒子。同時發現到當反應溫度小於 110 ℃時,所合到的產物並非為銅奈米粒子,而是表面不慎平整的氧化亞銅奈米粒子。


    TABLE OF CONTENTS ABSTRACT OF THE THESIS I TABLE OF CONTENTS VI LIST OF FIGURES X LIST OF TABLES XVIII LIST OF SCHEMES XX CHAPTER 1 Aqueous Solution Synthesis of Palladium Nanocrystals with Systematic Shape Evolution and Their Facet-Dependent Catalytic Activity 1.1 Introduction 1 1.1.1 Methods for Controlled Synthesis of Palladium Nanocrystals 2 1.1.1.1 Water–Based System for Controlled Synthesis of Palladium Nanocrystals 4 1.1.1.2 Seed-Mediated Approach for Controlled Synthesis of Palladium Nanocrystals 9 1.1.1.3 Oxidative Etching by HCl for Controlled Synthesis of Palladium Nanocrystals 15 1.1.2 Application of Metal Nanocrystals 19 1.1.3 Aim of this Thesis Study 22 1.2 Experimental Section 24 1.2.1 Chemicals 24 1.2.2 Synthesis of Palladium Nanocrysals 24 1.2.3 Synthesis of Palladium Nanocrystals with Smaller and Larger Sizes 26 1.2.4 Synthesis of Palladium Nanocrystals with Concave Structure by Increasing the Amount of Ascorbic Acid and Temperature 27 1.2.5 Time-Dependent UV-vis Absorption Spectroscopy at A Fixed Wavelength 27 1.2.7 Pd Nanocrystal-Catalyzed Tsuji‒Trost Allylic Amination Reactions 28 1.2.6 Instrumentation 29 1.3 Results and Discussion 30 1.4 Conclusion 52 1.5 References 54 CHAPTER 2 One-Pot Synthesis of Copper Nanoparticles in Aqueous Solution 2.1 Introduction 57 2.1.1 A Survey on Cu Nanoparticles 58 2.1.2 Methods for the Synthesis of Copper Nanocrystals 59 2.1.2.1 Nonaqueous System for Synthesis of Copper Nanocrystals 59 2.1.2.2 Aqueous System for Synthesis of Copper Nanocrystals 64 2.1.3 Introduction of this Thesis Study 68 2.2 Experimental Section 69 2.2.1 Chemicals 69 2.2.2 Synthesis of Copper Nanoparticles 69 2.2.2.1 The Preparation of Hexapod-like Copper Nanoparticles by Using AA as a Reducing Agent and HDA as Surfactant 69 2.2.2.2 The Preparation of Copper Nanocubes and Nanowires by Adding a Small Amount of Acid Solution 70 2.2.2.3 The Preparation of Copper Nanoparticles by Using SA as a Reducing Agent and CTAC as Surfactant 71 2.2.3 Instrumentation 72 2.3 Results and Discussion 73 2.4 Conclusion 86 2.5 References 87 Appendix 89

    Chapter 1
    1. Roucoux, A.; Schulz, J.; Patin, H. Chem. Rev. 2002, 102, 3757.
    2. Sosa, I. O.; Noguez, C.; Barrera, R. G. J. Phys. Chem. B 2003, 107, 6269.
    3. Orendorff, C. J.; Gole, A. Chem. Rev. 2005, 105, 1547.
    4. Tian, Z. Q.; Ren, B. Annu. Rev. Phys. Chem. 2004, 55, 197.
    5. Tian, Z. Q.; Ren, B.; Li, J. F; Tang, Z. L. Chem. Commun. 2007, 34, 3514.
    6. Favier, F.; Walter, E. C.; zach, M. P.; Benter, T.; Penner, R. M. Science 2001, 293, 2227.
    7. Rosi, N. L.; Mirkin, C. A. Chem. Rev. 2005, 105, 1547.
    8. Narayanan, R.; El-Sayed, M. A. J. Am. Chem. Soc. 2003, 125, 8340.
    9. Astruc, D. Inorg. Chem. 2007, 46, 1884.
    10. Yang, C. W.; Chanda, K.; Lin, P. H.; Wang, Y. N.; Liao, C. W.; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 19993.
    11. Xiong, Y.; McLellan, J. M.; Chen, J.; Yin, Y.; Li, Z.-Y.; Xia, Y. J. Am. Chem. Soc. 2005, 127, 17118.
    12. Xiong, Y.; Xia, Y. Adv. Mater. 2007, 19, 3385.
    13. Lim, B.; Jiang, M.; Tao, J.; Camargo, P. H. C.; Zhu, Y.; Xia, Y. Adv. Funct. Mater. 2009, 19, 189.
    14. Lee, Y. W.; Kim, M.; Han, S. W. Chem. Commun. 2010, 46, 1535.
    15. Fan, F. R.; Attia, A.; Sur, U. K.; Chen, J. B.; Xie, Z. X.; Li, J. F.; Ren, B.; Tian, Z. Q. Cryst. Growth Des. 2009, 9, 2335.
    16. Zhang, H. X.; Wang, H.; Re, Y. S.; Cai, W. B. Chem. Commun., 2012, 48, 8362.
    17. Xiong, Y.; Lim, B.; Skrabalak, S. E.; Xia, Y. Angew. Chem. Int. Ed. 2009, 48, 60.
    18. Niu, X. ;Li, Z. Y.; Shi, L.; Liu, X.; Li, H.; Han, S.; Chen, J.; Xu, G. Cryst. Growth Des. 2008, 8, 4440.
    19. Niu, X.; Zang, L.; Xu, G. ACS Nano 2010, 4, 1987.
    20. Zhang, L.; Niu, W.; Xu, G. Nanoscale, 2011, 3, 678.
    21. Zhang, J.; Feng, C.; Deng, Y.; Liu, L.; Wu, Y.; Shen, B.; Zhong, C.; Hu, W. Chem. Mater. 2014, 26, 1213.
    22. Liu, M.; Zheng, Y.; Zhang, L.; Guo, L.; Xia, Y. J. Am. Chem. Soc., 2013, 135, 11752.
    23. Astruc, D. Inorg. Chem. 2007, 46, 1884.
    24. Ohtaka, A.; Teratani, T.; Fujii, R.; Ikeshita, K.; Kawashima, T.; Tatsumi, K.; Shimomura, O.; Nomura, R. k. J. Org. Chem. 2011, 76, 4052.
    25. Chu, Y.-T.; Chanda, K.; Lin, P.-H.; Huang, M. H. Langmuir 2012, 28, 11258.
    26. Tao, A. R.; Habas, S.; Yang, P. Small, 2008, 4, 310.
    27. Sun, Y.; Zhang, L.; Zhou, H.; Zhu, Y.; Sutter, E.; Ji, Y.; Rafailovich, M. H.; Sokolov, J. C. Chem. Mater. 2007, 19, 2065.
    28. Yang, C.-W.; Chanda, K.; Lin, P.-H.; Wang, Y.-N.; Liao, C.-W.; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 19993.
    29. Sreedhala, S.; Sudheeshkumar, V.; Vinod, C. P. Nanoscale 2014, 6, 7496.
    30. Niu, W.; Zhang, W.; Firdoz, S.; Lu, X. Chem. Mater. 2014, 26, 2180.
    31. Chiu, C.-Y.; Huang, M. H. J. Mater. Chem. A 2013, 1, 8081.
    32. Yang, C.-W.; Chanda, K.; Lin, P.-H.; Wang, Y.-N.; Liao, C.-W.; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 19993.
    33. Xia, X.; Choi, S.-I.; Herron, J. A.; Lu, N.; Scaranto, J.; Peng, H.-C.; Wang, J.; Mavrikakis, M.; Kim, Xia, Y. J. Am. Chem. Soc. 2013, 135, 15706.

    Chapter 2
    1. Wang, Y.; Biradar, A. V.; Wang, G.; Sharma, K. K.; Duncan, C. T.; Rangan, S.; Asefa, T. Chem. Eur. J. 2010, 16, 10735.
    2. Zhang, J.; Liu, W.; Sun, J.; Sun, H.; Guo, J. Mater. Sci. Eng. A. 2006, 433, 257.
    3. Chawla, A.; Chandra, R. J. Nanopart. Res. 2009, 11, 297.
    4. Blosi, M.; Albonetti, S.; Dondi, M.; Martelli, C.; Baldi, G. J. Nanopart. Res. 2011, 13, 127.
    5. Zou, J.; Zhang, J.; Zhang, B.; Zhao, P.; Huang, K. Mater. Lett. 2007, 61, 5029.
    6. Ensign, D.; Young, M.; Douglas, T. Inorg. Chem. 2004, 43, 3441.
    7. Zhou, X. J.; Harmer, A. J.; Heinig, N. F.; Leung, K. T. Langmuir 2004, 20, 5109.
    8. Mignani, A.; Ballarin, B.; Boanini, E.; Cassani, M. C. Electronchim. Acta 2014, 115, 537.
    9. Epifani, M.; De, G.; Licciulli, A.; Vasanelli, L. J. Mater. Chem. 2001, 11, 3326.
    10. Ponce, A. A.; Klabunde, K. J. J. Mol. Catal. A: Chem. 2005, 225, 1.
    11. Haitao, Z.; Canying, Z.; Yansheng, Y. Nanotechnology 2005, 16, 3079.
    12. Zhou, G.; Lu, M.; Yang, Z. Langmuir 2006, 22, 5900.
    13. Xia, X.; Xie, C.; Cai, S.; Yang, Z.; Yang, X. Corros. Sci. 2006, 48, 3924.
    14. Biçer, M.; Şişman, İ. Powder Technol. 2010, 198, 279.
    15. Jin, M.; He, G.; Zhang, H.; Zeng, J.; Xie, Z.; Xia, Y. Angew. Chem. Int. Ed. 2011, 50, 10560.
    16. Su, X.; Zhao, J.; Bala, H.; Zhu, Y.; Gao, Y.; Ma, S.; Wang, Z. J. Phys. Chem. C 2007, 111, 14689.
    17. Guo, H.; Chen, Y.; Ping, H.; Jin, J.; Peng, D.-L. Nanoscale 2013, 5, 2394.
    18. Zhang, D.; Wang, R.; Wen, M.; Weng, D.; Cui, X.; Sun, J.; Li, H.; Lu, Y. J. Am. Chem. Soc. 2012, 134, 14283.
    19. Liu, Z.; Yang, Y.; Liang, J.; Hu, Z.; Li, S.; Peng, S.; Qian, Y. J. Phys. Chem. B 2003, 107, 12658.
    20. Yang, H.-J.; He, S.-Y.; Chen, H.-L.; Tuan, H.-Y. Chem. Mater. 2014, 26, 1785.
    21. Park, B. K.; Jeong, S.; Kim, D.; Moon, J.; Lim, S.; Kim, J. S. J. Colloid Interface Sci. 2007, 311, 417.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE