簡易檢索 / 詳目顯示

研究生: 徐家保
Hsu, Chia-Pao
論文名稱: 以SOI晶片實現微型三軸加速度計
Implementation of SOI-based 3-axis acceleration detecting system
指導教授: 葉銘泉
Yip, Ming-Chuen
方維倫
Fang, Weileun
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 129
中文關鍵詞: 氣密閉合差分電容電極三軸加速度計
外文關鍵詞: SOI, gap-closing, differential capacitive electrodes and 3-axis accelerometer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以SOI晶片為基礎,透過一般型態之電容式平面加速度計為例,探討加速度計元件之設計考量參數,並透過元件設計模擬、製程開發,研製出平面加速度計。並透過量測系統的建置,量測平面加速度計之基本元件特性。從此基礎進而發展新型態透過SOI晶片為基礎,研製以差分電容感測電極之出平面加速度計,其中感測電極以氣密閉合架構提高元件靈敏度,並初步驗證出平面加速度計之可行性。此出平面具有:(1)質量塊包含SOI晶片之元件層以及處理層;(2)量測之靈敏度因為氣密閉合的差分電極感測而增加;(3)透過金屬連接SOI晶片元件層以及處理層的電性;(4)感測電極間距由SOI晶片中的氧化層決定。並透過出平面加速度計之設計概念,進一步設計出單一質量塊三軸加速度計,其中三軸感測方向之電極,皆以氣密閉合差分電容感測電極架構來達成。三軸加速度計除了前述出平面加速度計之特向外,具有:(1)透過多晶矽回填技術連接SOI晶片元件層以及處理層的電性;(2)三軸感測方向皆是以氣密閉合之差分電容電極為架構,且透過單一質量塊感測三軸方向之設計。最後,製程設計具有批量製造之能力,並初步驗證三軸加速度計之可行性。


    第一章 緒論 1 1-1前言 1 1-2文獻回顧 2 1-3 研究目標 8 第二章 加速度計基本原理及元件特性 28 2-1 基本原理 28 2-1-1 加速度計元件運動行為 28 2-1-2 加速度計元件電容感測表示 31 2-1-3 電容感測放大器 33 2-1-4 加速度計元件增益流程圖 35 2-2 加速度計元件特性介紹 35 2-3 平面加速度之設計 37 2-3-1 平面加速度元件設計概念 37 2-3-2 製程設計與結果 38 2-3-3 元件封裝與量測 39 2-4 結論 39 第三章 出平面差分電極之加速度計設計 48 3-1 設計概念 48 3-2 製程設計與結果 50 3-3 元件封裝與量測 52 3-4結論 53 第四章 差分感測電極之單質量塊三軸加速度計 67 4-1 設計概念 67 4-2 製程設計與結果 74 4-3 元件封裝與量測 76 4-4 結論 79 第五章 總結 96 5-1 研究成果 96 5-2 未來工作 97 參考文獻 100 論文發表 108 附錄A 微機電加速度計之衝擊試驗可靠度分析 109 A-1 衝擊試驗 109 A-2 結論 110 附錄B 業界加速度計元件發展 120

    [1] http://www.yole.com/
    [2] http://www.analog.com/en/index.html
    [3] http://www.eettaiwan.com/
    [4] http://www.apple.com/tw/iphone/
    [5] http://wii.com/
    [6] http://asia.playstation.com/tw/cht
    [7] E. Peeters, S. Vergote, B. Puers, and W. Sansen, “A highly symmetrical capacitive micro-accelerometer with single degree-of-freedom response,” J. Micromech. Microeng., Vol. 2, pp.104-112, 1992.
    [8] L. Ristic, R. Gutteridge, J. Kung, D. Koury, B. Dunn, and H. Zunino, “A capacitive type accelerometer with self-test feature based on a double-pinned polysilicon structure,” Transducer’93, Yokohama, Japan, June 1993, pp. 810-812.
    [9] F. Rudolf, A. Jornod, and P. Benze, “Silicon microaccelerometers,” Transducer’87, Tokyo, Japan, June 1987, pp. 376-379.
    [10] F. Rudolf, A. Jornod, J. Berqovist, and H. Leuthold, “Precision accelerometers with □g resolution,” Sensors Actuators, Vol. A21/A23, 1990, pp. 297-302.
    [11] W. Henrion, L. DiSanza, M. Ip, S. Terry, and H. Jerman, “Wide-dynamic range direct digital accelerometer,” in Tech. Dig. Solid-State Sensors and Actuators Workshop, Hilton Head Island, SC, June 1990, pp. 153-156.
    [12] Y. de Coulon, T. Smith, J. Hermann, M. Chevroulet, and F. Rudolf, “Design and test of a precision servoaccelerometer with digital output,” Transducer’93, Yokohama, Japan, June 1993, pp. 832-835.
    [13] K. Warren, “Navigation grade silicon accelerometer with sacrificially etched SIMOX and BESOI structure,” in Tech. Dig. Solid-State Sensors and Actuators Workshop, Hilton Head Island, SC, June 1994, pp. 69-72.
    [14] N. Yazdi and K. Najafi, “An all-silicon single-wafer fabrication technology for precision microaccelerometer,” Transducer’97, Chicago, IL, June 1977, pp. 1181-1184.
    [15] K. J. Ma, N. Yazdi, and K. Najafi, “A bulk-silicon capacitive microaccelerometer with built-in overrange and force feedback electrodes,” in Tech. Dig. Solid-State Sensors and Actuators Workshop, Hilton Head Island, SC, June 1994, pp. 160-163.
    [16] N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proceedings of IEEE, Vol. 86, No. 8, August 1998, pp. 1640-1659.
    [17] S. J. Sherman, W. K. Tsang, T. A. Core, R. S. Payne, D. E. Quinn, K. H. Chau, J. A. Farash, and S. K. Baum, “A low-cost monolithic accelerometer: Product/technology update,” in Tech. Dig. IEEE Electron Devices Meeting (IEDM’92), Dec. 1992, pp. 160-161.
    [18] B. Boser and R. T. Howe, “Surface micromachined accelerometers,” IEEE J. Solid-State Circuits, Vol. 31, pp. 366-375, Mar. 1996.
    [19] K. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R. G. Marcheselli, “An integrated force-balanced capacitive accelerometer for low-g applications,” Transducer’95, Stockholm, Sweden, June 1995, pp. 593-596.
    [20] B. P. van Drieenhuizen, N. Maluf, I. E. Opris, and G. Kovacs, “Force-balanced accelerometer with mG resolution fabricated using silicon fusion bonding and deep reactive ion etching,” Transducer’97, Chicago, IL, June 1997, pp. 1229-1230.
    [21] J. C. Cole, “A new sense element technology for accelerometer subsystems,” Transducer’91, San Francisco, CA, June 1997, pp. 93-96.
    [22] L. Spangler, and C. J. Kemp, “ISAAC-Integrated silicon automotive accelerometer,” Transducer’95, Stockholm, Sweden, June 1995, pp. 585-588.
    [23] A. Selvakumar, F. Ayazi, and K. Najafi, “A high sensitivity z-axis torsional silicon accelerometer” in Tech. Dig. IEEE Int. Electron Device Meeting, San Francisco, CA, Dec. 1996, pp. 765-768.
    [24] A. C. McNeil, G. Li, and D. N. Koury, U.S. Pat. 6845670 B1, Jan. 25, 2005.
    [25] T. Hauck, G. Li, A. McNeil, H. Knoll, M. Ebert, and J. Bagdahn, “Drop Simulation and Stress Analysis of MEMS Devices,” 7th. Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE 2006, pp. 1-5.
    [26] http://www.st.com/stonline/
    [27] http://www.freescale.com/
    [28] J. E. Vandemeer, B. P. Gogoi, and J. H. Hammond, U.S. Pat. 7000473 B2, Feb. 21, 2006
    [29] G. G. Li, B. Gogoi, H. D. Desai, J. H. Hammond, and B. Diem, U.S. Pat. 2007/0090474 A1, Apr. 26, 2007.
    [30] B. P. Gogoi, U.S. Pat. 7159459 B2, Jan. 9, 2007.
    [31] A. C. McNeil, U.S. Pat. 7121141 B2, Oct. 17, 2006.
    [32] http://www.bosch-sensortec.com/content/language1/html/index.htm
    [33] http://www.vti.fi/en/
    [34] G. L. Mahon, U.S. Pat. 6829937 B2, Dec. 14, 2004.
    [35] H. Kuisma, J. Lahdenpera, and R. Mutikainen, U.S. Pat. 6938485 B2, Sep. 6, 2005.
    [36] H. Kuisma, U.S. Pat. 7426863 B2, Spe. 23, 2008.
    [37] H. Manninen, U.S. Pat. 7340955 B2, Mar. 11, 2008.
    [38] http://www.globaldenso.com/en/
    [39] T. Fujii, U.S. Pat. 6227049 B1, May 8, 2001.
    [40] T. Fujii, and M. Imai, U.S. Pat. 6550331 B2, Apr. 22, 2003.
    [41] http://www.memsic.com/
    [42] http://www.wacoh.co.jp/
    [43] K. Okada, Pat. 5856620, Jan. 5, 1999.
    [44] K. Okada, H. Itano, and N. Taniguchi, U.S. Pat. 6378381 B1, Apr. 30, 2002.
    [45] K. Okada, U.S. Pat. 6772632 B2, Aug. 10, 2004.
    [46] E. Peeters, S. Vergote, B. Puers, and W. Sansen, “A highly symmetrical capacitive micro-accelerometer with single degree-of-freedom response,” Journal of Micromechanics and Microengineering, Vol. 2, April 1992, pp. 104-112.
    [47] F. Xiao, L. Che, B. Xiong, Y. Wang, X. Zhou, Y. Li, and Y. Lin, “A novel capacitive accelerometer with an eight” Journal of Micromechanics and Microengineering, Vol. 18, April 2008.
    [48] A. McNeil, “Flexible Design Techniques for Polysilicon MEMS Process,” Int. Elect. Manu. Tech. Symposium, 2007, pp. 290-293.
    [49] W. Yun, R. T. Howe, and P. R. Gray, “Surface micromachined digitally force-balanced accelerometer with integrated CMOS detection circuitry,” in Tech. Dig. Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 1992, pp. 126-131.
    [50] C. Lu, M. Lemkin, and B. Boser, “A monolithic surface micromachined accelerometer with digital output,” IEEE J. Solid-State Circuit, Vol. 30, pp. 1367-1373, Dec. 1995.
    [51] M. Lemkin, B. Boser, and J. Smith, “A 3-axis surface micromachined ΣΔ accelerometer,” in Tech. Digest Int. Solid-State Circuits Conf. (ISSCC’97), San Francisco, CA, Feb. 1997, pp. 202-203.
    [52] “ADXL05-monolithic accelerometer with signal conditioning,” Analog Devices, Norwood, MA, data sheet, 1995.
    [53] M. A. Lemkin, M. A. Ortiz, N. Wonglomet, B. E. Boser, and J. H. Smith, “A 3-axis force balanced accelerometer using a single proof-mass,” Transducer’97, Chicago, IL, June 1997, pp. 1185-1188.
    [54] http://www.mems.sandia.gov/tech-info/mems-overview.html
    [55] A. Selvakumar, and K. Najafi, “A high-sensitivity z-axis capacitive silicon microaccelerometer with a torsional suspension,” Journal of Microelectromechanical Systems, Vol. 7, No. 2, June 1998, pp. 192-200.
    [56] N. Yazdi, and K. Najafi, “An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process,” Journal of Microelectromechanical Systems, Vol. 9, No. 4, December 2000.
    [57] J. Chae, H. Kulah, and K. Najafi, “A monolithic three-axis micro-g micromachined silicon capacitive accelerometer,” Journal of Microelectromechanical Systems, Vol. 14, No. 2, April 2005.
    [58] H. Xie, and G. K. Fedder, “A CMOS Z-axis capacitive accelerometer with comb-finger sensing,” MEMS’00, Miyazaki, Japan, Jan. 2000, pp. 496-501.
    [59] H. Luo, G. K. Fedder, and L. R. Carley, “A 1mG lateral CMOS-MEMS accelerometer,” MEMS’00, Miyazaki, Japan, Jan. 2000, 502-507.
    [60] J. Wu, G. K. Fedder, and L. R. Carley, “A low-noise low-offset chopper-stabilized capacitive-readout amplifier for CMOS MEMS accelerometers,” in Tech. Dig. IEEE Int. Solid-State Circuits Conf. (ISSCC’02), San Francisco, CA, Feb. 2002, pp. 428-430.
    [61] H. Xie, L. Erdmann, X. Zhu, K. J. Gabriel, and G. K. Fedder, “Post-CMOS processing for high-aspect-ratio integrated silicon microstructures,” Journal of Microelectromechanical systems, Vol. 11, No. 2, April 2002, pp. 93-101.
    [62] H. Lakdawala, and G. K. Fedder, “Temperature stabilization of CMOS capacitive accelerometers,” Journal of Micromechanics and Microengineering, Vol. 14, Jan. 2004, pp. 559-566.
    [63] H. Qu, D. Fang, H. Xie, “A Monolithic CMOS-MEMS 3-axis Accelerometer with a Low-Noise, Low-Power Dual-Chopper Amplifier,” IEEE Sensor Journal, Vol. 8, 2009, pp. 1511-1518.
    [64] M. H. Tsai, C. Wang, and W. Fang, “A novel out-of-plane accelerometer with fully-differential sensing circuit and sub-micron gap,” Transducer’07, Lyon, France, June 2007, pp. 1487-1490.
    [65] M. H. Tsai, C. M. Sun, Y. C. Liu, C. Wang, and W. Fang, “Design and implementation of high performance CMOS-MEMS capacitive sensors,” Transducer’09, Denver, US, June 2009, pp. 672-675.
    [66] C. M. Sun, M. H. Tsai, C. Wang, Y. C. Liu, and W. Fang, “Implementation of a monolithic TPMS using CMOS-MEMS technique,” Transducer’09, Denver, US, June 2009, pp. 1730-1733.
    [67] C. Wang, M. H. Tsai, C. M. Sun, and W. Fang, “A novel CMOS out-of-plane accelerometer with fully differential gap-closing capacitance sensing electrodes,” Journal of Micromechanics and Microengineering, Vol. 17, June 2007, pp. 1275-1280.
    [68] M. H. Tsai, C. M. Sun, Y. C. Liu, C. Wang, and W. Fang, “Design and application of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors,” Journal of Micromechanics and Microengineering, Vol. 19, Sep. 2009, pp 1-7.
    [69] Y. Matsumoto, M. Nishimura, M. Matsuura, and M. Ishida, “Three-axis SOI capacitive accelerometer with PLL C-V converter,” Sensor and Actuator A, Vol. 75, 1999, pp. 77-85.
    [70] B. V. Amini, S, Pourkamali, and F. Ayazi, “A high resolution, stictionless, CMOS compatible SOI accelerometer with low noise, low power, 0.25□m CMOS interface,” MEMS 2004, Maastricht, Netherlands, Jan. 2004.
    [71] T. Tsuchiya, and H. Funabashi, “A z-axis differential capacitive SOI accelerometer with vertical comb electrodes,” Sensor and Actuator A, Vol. 116, 2004, pp. 378-383.
    [72] B. V. Amini, R. Abdolvand, and F. Ayazi, “A 4.5-mW closed-loop ΔΣ micro-gravity CMOS SOI accelerometer,” IEEE Journal of Solid-State Circuit, Vol. 41, No. 12, Dec. 2006, pp. 2983-2991.
    [73] R. Abdolvand, B. V. Amini, and F. Ayazi, “Sub-micro-gravity in-plane accelerometer with reduced capacitive gaps and extra seismic mass,” Journal of Microelectromechanical systems, Vol. 16, No. 5, Oct. 2007, pp. 1036-1043.
    [74] H. Hamaguchi, K. Sugano, T. Tsuchiya, and O. Tabata, “A differential capacitive three-axis SOI accelerometer using vertical comb electrodes,” Transducer’07, Lyon, France, June 2007, pp. 147-150.
    [75] T. Tsuchiya, H. Hamaguchi, K. Sugano, and O. Tabata, “Design and fabrication of a differential capacitive three-axis SOI accelerometer using vertical comb electrodes,” IEEJ Transactions on Electrical and Electronic Engineering, Vol. 4, Apr. 2009, pp. 345-351.
    [76] T. Mineta, S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E. Suganuma, and E. Esashi, “Three-axis capacitive accelerometer with uniform axial sensitivities,” Journal of Micromechanics and Microengineering, Vol. 6, July 1996, pp. 431-435.
    [77] K. Yoshida, Y. Matsumoto, M. Ishida, and K. Okada, “High-sensitive three axis SOI capacitive accelerometer using dicing method,” Technical Digest of The 16th Sensor Symposium, 1998, pp. 25-28.
    [78] Y. Watanabe, T. Mitsui, T. Mineta, S. Kobayashi, N. Taniguchi, and K. Okada, “Five-axis motion sensor with electrostatic drive and capacitive detection fabricated by silicon bulk micromachining,” Sensors and Actuators A, A97/A98, 2002, pp. 109-115.
    [79] Y. Watanabe, T. Mitsui, T. Mineta, Y. Matsu, and K. Okada, “SOI micromachined 5-axis motion sensor using resonant electrostatic drive and non-resonant capacitive detection mode,” Sensor and Actuators A, A130/A131, 2006, pp.116-123.
    [80] http://www.irvine-sensors.com/pdf/MS3110%20Datasheet%20USE.pdf

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE