簡易檢索 / 詳目顯示

研究生: 顏瀚琦
Han-chee Yen
論文名稱: 微細聚焦調變鏡之分析與實作
Analysis and Fabrication of Deformable Focusing Micromirrors
指導教授: 陳榮順 博士
Dr. Rongshun Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2000
畢業學年度: 88
語文別: 英文
論文頁數: 101
中文關鍵詞: 微機電系統微光機電系統聚焦鏡微致動器靜電驅動微反射鏡微調變鏡
外文關鍵詞: MEMS, MEMOS, focusing mirror, micro actuator, electrostatic actuation, micromirror, deformable mirror
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以靜電驅動的反射元件已成為微光機電系統(MEMOS)的研究重點,此元件可應用在適應性控制光學(adaptive optics)及焦距的調變。本論文以表面微型加工的方式來製作以多層材料為鏡面之微細聚焦調變器。並利用靜電驅動來改變鏡面之變形,達到改變焦距的目的。而本文可分為分為模擬分析及實作量測兩方面。
    在模擬分析方面,除了以板殼理論分析結構變形與熱應力及施加電壓的關係外,並以套裝模擬軟體“IntelliSuite”針對不同的製程參數及設計變數來預測因製程條件和施加電壓所導致的變形。同時也以田口式法則(Taguchi method)進行穩健型分析以達到需求。這些模擬分析結果均可提供設計此元件參數和規劃元件製程條件的依據。

    在實作方面,則製作出500微米的扇形鏡面結構,並於量測後得知其曲率半徑約為400微米。


    Micro-Electro-Mecha-Optical system, aiming at optical applications in MEMS, uses deformable mirrors to conduct adaptive optics devices and to change the focal length of the mirror. This thesis designed multi-layer deformable micromirrors with electrostatic actuation to adjust the focal length based on surface micromachining. The content of this thesis can be separated into two parts: analysis and fabrication.
    In analysis, plate and shell theories are used to obtain the relations among deformation, thermal stress, and applied voltage. A series of simulations, by using IntelliSuite, are performed to investigate the process- and voltage-induced deformation under various parameters for a focusing micro-mirror. Robust designs are obtained by using Taguchi method. The aim of simulations is to provide the characteristics of variables for the device, which may help the designers for choosing better parameters when fabricated.

    In fabrication, sectored structures with 500 um diameters are fabricated successfully. Curvature radius is measured which is about 400 um.

    ABSTRACT I CONTENTS II TABLES AND FIGURES IV CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND AND MOTIVATION 1 1.2 LITERATURE REVIEWS 4 1.3 ORGANIZATION OF THIS THESIS 15 CHAPTER 2 DESIGN AND RELATED THEORIES 16 2.1 STRUCTURE DESIGN 16 2.2 RELATED THEORIES 17 2.2.1 Estimation of Focal Length 17 2.2.2 Prediction of Process-induced Deformation 19 2.2.3 Prediction of Voltage-induced Deformation 22 CHAPTER 3 SIMULATION RESULTS 27 3.1 PROCESS-INDUCED MIRROR DEFORMATION 27 3.1.1 Structure Layer Material 28 3.1.2 Structure Layer Thickness 30 3.1.3 Metal Layer Material 32 3.1.4 Metal Layer Thickness 34 3.1.5 Sector Number 35 3.1.6 Anchor Size 37 3.1.7 Summary 38 3.2 VOLTAGE-INDUCED MIRROR DEFORMATION 38 3.2.1 Single-bottom Electrode Model 40 3.2.2 Double-bottom Electrode Model 46 3.2.3 Comparisons 49 3.2.4 Methods to Improve the Behavior in Arc Direction 54 3.3 CIRCULAR-CLAMPED MIRROR 55 CHAPTER 4 ROBUST ANALYSIS 59 4.1 ROBUST ANALYSIS OF A TWO-LAYER MIRROR STRUCTURE 59 4.2 ROBUST ANALYSIS OF A THREE-LAYER MIRROR STRUCTURE 65 CHAPTER 5 FABRICATION PROCESS 72 5.1 PLAN FOR FABRICATION PROCESS 72 5.2 MASK LAYOUT 74 5.3 FABRICATION PROBLEMS 75 5.3.1 Bottom Electrode Exfoliation 75 5.3.2 BOE Etching Problems 76 5.3.3 PR Problems 77 5.3.4 Sticking Problems 79 5.3.5 Warping Phenomenon and Mirror Structure Breakage 81 5-4 FABRICATION RESULTS 83 CHAPTER 6 MEASUREMENTS 88 6.1 PROCESS-INDUCED DEFORMATION 88 6.2 VOLTAGE-INDUCED DEFORMATION 94 CHAPTER 7 CONCLUSIONS AND FUTURE WORKS 95 7.1 CONCLUSIONS 95 7.2 FUTURE WORKS 95 REFERENCES 97

    [1] H. Fujita, “Microactuators and Micromachines, "Proceedings of the IEEE, vol. 86, no. 8, August 1998, pp.1721-1732.
    [2] F. C. M. Van De Pol, D. G. J. Wonnink, M. Elwenspoek, and J. H. J. Fuuitman, “A thermo-pneumatic actuation principle for a microminiature pump and other micro mechanical devices,“ Sensor and Acruators, vol. 17, pp. 139-143, 1989.
    [3] D. Wood, J. S. Burdess, and A. J. Harris, “Actuators and Their Mechanisms in Microengineering,” Actuator Technology: Current Practice and New Developments., IEE Colloquium on (Digest No: 1996/110) , 1996 , Page(s): 7/1 -7/3.
    [4] J. A. Walker, K. W. Goossen, and S. C. Amey, “Fabrication of a mechanical anti-reflection switch for fiber-to-the-home application,” IEEE/ASME J. Microelectromech. Syst., vol. 5, no. 1, pp.45-51, 1996.
    [5] H. Fujita and H. Toshiyoshi, “Micro-optical devices,” in Hand-book of Microlithography, Micromachining, and Microfabrication, P.Rai-Choudhury, ED SPICE Optical Engineering Press, 1997, vol. 2, ch. 8, pp. 299-378.
    [6] K. Petersen, “Silicon as a mechanical material, ”Proc. IEEE, vol. 70, p.420, 1982.
    [7] J. H. Jerman and D. J. Clift, “Miniature Fabry-Perto Interfermeters Micromachined in Silicon for Use in Optical Fiber WDM systems,” Proc. Transducer ‘91, pp. 170-173
    [8] O. Solgarrd, F Sandejas, W. Banyia, and D. Bloom, “Deformable Grating Optical Modulator,” Opitcs Letters, vol. 17, May 1992, pp.688
    [9] Y. Ohtuka, H. Nisikawa, T. Koumura, and T.Hattori, “2-Dimensional Optical Scanner Applying a Torsional Resonator with 2 Degrees of Freedom,” Proc. MEMS ‘95, pp. 306-309.
    [10] T. Shinonok, “Reflection Micro-Fresnel Lenses and their Use in an Integrated Focus Sensor,” Applied Optics, vol. 28, no. 15/15 August 1989.
    [11] L. Y. Lin, S. S. Lee, M.C. Wu, and K. S. J. Pister, “Micromachined Intergrated Optics for Free-Space Interconnections,” Proc. MEM ‘95, pp. 77-82.
    [12] S. Akamine, H. Kuwano, and K. Fukuzawa, “Development of Microphotocantilever for Near-Field Scanning Optical Microscopy,” Proc. MEMS ‘95, pp.145-150.
    [13] M. Hisanaga, T. Koumura, and T. Hattori, “Fabrication of 3-Dimensionally Shaped Si Diaphragm Dynamic Focusing Mirror,” Proc. MEMS ‘93, pp. 30-35
    [14] M. A. Mignardi, “Digital Micromirror Array for Porjection TV,” Solid State Technology, pp.63-68, July 1994.
    [15] J. R. Meyer-Arendt, Introduction to Classical and Modern Optics, pp. 183, 1989.
    [16] R. P. Leland, “Requirements and Models for Adaptive Optics in Coherent Lidar Wind Measurements,” Proc. Decision and Control, pp. 3540-3541, December 1992.
    [17] M. Madou, Fundamentals of Microfabciation, p.360, p.507, 1997.
    [18] S. D. Senturia, Microsystems: Mechanical, Chemcial, Optical, Chapter 17.
    [19] Y. Kiuaya, M. Hirano, K. Koyabu, and F. Ohira, “Micro Alignment Machine for Optical Coupling,” Proc. MEMS ‘93, pp. 36-41.
    [20] T. G. Bifano, “Surface Micromachined Mirrors,” Proc. IEEE, pp. 393-399, 1996.
    [21] L. M. Miller, “Fabrication and Characterization of a Micromachined Deformable Mirror for Adaptive Optics,” SPIE vol. 1945, April 1993, pp. 421-430.
    [22] C. Lee, “Design and fabrication of Varialbe focusing micro Mirror,” Master Dissertation of National Tsing-Hua University, Jun. 1999.
    [23] G. T. K. Kovacs, Micromachined Transducers, Sourcebook, Stanford University, pp. 461-484, 1998.
    [24] R. P. Grosso and M. Yellin, “The Membrane Mirror as an Adaptive Optical Element,” Journal of Optical Society of America, vol.67, no. 3, pp. 339-406, 1977.
    [25] L. J. Hornbeck, “128×128 Deformable Mirroe Device,” IEEE Trans. Electron Devices, vol, ED-30, pp. 539-545, 1983.
    [26] R. M. Boysel, “1920*1080 element deformable mirror device for high-definition display,” Electron Devices, IEEE Transactions on Volume: 3812 , Dec. 1991 , p.2715
    [27] H. Fujita, “An Integrated Micro Servosystem,” Proc. IEEE, 1988, pp. 15-20
    [28] O. Solgaard, F. S. A. Sandejas, and D M. Bloom, “Deformable Grating Optical Modulator,” Optics Letters, vol. 17 , no. 9, May 1, 1992, pp. 688-690.
    [29] L. M. Miller, “Fabrication and Characterization of a Micromachined Deformable Mirror for Adaptive Optics,” SPIE vol. 1945, April 1993, pp. 421-430.
    [30] M. Hisannage, T. Koumura, and T. Hattori, “Fabrication of 3-dimensionally shaped Si diaphragm dynamic focusing mirror,” IEEE MEMS, 1993, pp. 30-35.
    [31] G. Vdovin and S. Middelhoek, “Deformable Mirror Display with Continuous Reflecting Surface Micromachined in Silicon,” Proceedings of the IEEE MEMS Conference, Amsterdam, Netherlands, Jan. 29-Feb. 2, 1995, pp. 61-65.
    [32] H. Kück, W. Doleschal, A. Gehner, W. Grundke, R. Melcher, J. paufler, R. Seltmann, and G. Zimmer, “Deformable Micromirror Devices as Phase Modulating High Resolution Light Valves,” the 8th International Conference on Solid-State Sensors and Actuators, Jun. 25-29, 1995, pp.301-304.
    [33] J. W. Judy and R. S. Muller, “Batch-Fabricated, Addressable, Magnetically Actuated Micro-structure,” Proceedings of the 1996 Solid-State Sensors and Actuators Workshop,” Jun. 3-6, 1996, pp. 3046-3064.
    [34] P. K. C. Wang, “A Method for Designing Electrostatic-Autuator Electorde Pattern in Micromachined Deformable Mirrors,” Sensors and Actuators A55, 211-217, 1996.
    [35] P. K. C. Wang, “Computation of Static Shapes and Voltages for Micromachined Deformable Mirrors with Nonlinear Electrostatic Actuators,” Journal of Microelectormechanical Systems, vol. 5, no.3, September 1996.
    [36] R. A. Miller, G. W. Burr, Y.-C. Tai, D. Psaltis, C. H. Ho., and R. R. Katti, “Electromagnetic MEMS Scanning Mirrors for Holographic Data Storage,” Proceedings of the 1996 Solid-State Sensors and Actuators Workshop,” Jun. 3-6, 1996, pp.89-92.
    [37] C. Divoux, O. Cugat, and G. Rrene, ”Deformable Mirror using Magnetic Membrane: Application to Adaptive Optics in Astrophysics,” IEEE Transaction on Magnetics, vol. 34, no. 5, Sep. 1998, pp. 3564-3567.
    [38] D. M. Burns and V. M. Bright, “Micro-Electro-Mechanical Focusing Mirrors,” Proc. MEMS ‘98, pp. 460-465.
    [39] J. L. Chang, “Microwave Micro-Actuators,” Doctor Dissertation of National Taiwan University, Dec. 1998, pp. 3-20.
    [40] 李正國, “微機電技術與產品之演進看關連產業之前景,” 電子月刊第48期, Jul. 1999, pp. 98-110.
    [41] S. Timoshenko, “Analysis of Bi-Metal Thermostats,” J.O.S.A., pp. 233-255, September, 1925.
    [42] A. C. Ugural, Stress in Plates and Shells, second edition, New Jersey Institute of Technology, 1999.
    [43] 林孟儒, ”微機電致動元件二平板間之動態研究,”國立清華大學博士論文計劃書, Jun. 1999.
    [44] D. K. Cheng, Field and Wave Electromagnetics, Addison-Wesley Publish Company, Inc., 1989.
    [45] P. Osterberg and H. Tie, “Self Consistent Simulation and Modeling of a Electrostatically Deformed Diaphragms,” Proc. MEMS ’94, Oiso Japan, Jan. 1994, pp. 28-32.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE