簡易檢索 / 詳目顯示

研究生: 曾冠賓
Tseng, Kuan-Pin
論文名稱: 聚(3-己烷噻吩)/ 6,6-苯基-C61丁酸甲酯薄膜在旋轉塗佈過程中的結構演化
Structural Development of Poly(3-hexylthiophene)/Fullerene Thin Films during Spin-coating Process
指導教授: 蘇安仲
Su, An-Chung
口試委員: 鄭有舜
Jeng, U-Ser
蘇群仁
Su, Chun-Jen
莊偉綜
Chuang, Wei-Tsung
李紹先
Li, Shao-Sian
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 20
中文關鍵詞: 旋轉塗佈聚(3-己烷噻吩)6,6-苯基-C61丁酸甲酯結構演化X光散射略角度入射光學干涉儀小角度散射廣角度散射相分離
外文關鍵詞: spin-coating, P3HT, poly(3-hexylthiophene), PCBM, [6,6]-phenyl-C61-butyric acid methyl ester, grazing incidence X-ray scattering, optical reflectivity, UV-vis reflectance spectroscopy, structural development, vertical phase separation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用以0.12˚入射的略角小角度和廣角度X光散射來區別在旋轉塗佈過程中薄膜表面和整層膜裡聚(3-己烷噻吩)(P3HT)/6,6-苯基-C61丁酸甲酯(PCBM)混和物奈米尺度的結構演化與高分子的結晶行為。在含有重量百分比2.7 %的P3HT:PCBM(重量比1:0.8)氯苯溶液中,從臨場垂直入射光學干涉儀的結果可得知,旋轉塗佈初期在薄膜表面形成的溶質富含層會在底層的溶劑藉由離心力甩乾和蒸發後形成最終的薄膜;且空氣接觸面為PCBM含量相對較高的區域。因此在薄膜表層快速形成,且形成後大致固定的P3HT/PCBM垂直含量分布會導致在旋轉塗佈過程中薄膜表面與整層膜中結構演化的不同;其中在表面的P3HT結晶會相對被抑制,進而使PCBM的聚集被延遲,且聚集過程被拖長。藉由溶解相同重量比的P3HT與PCBM於溶液中,其整體相對較低的異質性(heterogeneity),以及在PCBM於膜中形成碎形結構後散射不變量(invariant)和結晶度延續較久的成長平台,可推論較高含量的PCBM會抑制P3HT和PCBM的相分離,確立P3HT及PCBM在不同重量比下對結構發展的影響。


    The structural developments of phase-separated nanodomains and polymer crystallization at the surface are identified from that in the bulk film of a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) during spin coating process via in situ grazing incidence small/wide-angle X-ray scattering (GISAXS/GIWAXS) operated at a 0.12˚ incident angle in this study. For a chlorobenzene solution containing 2.7 wt% of P3HT:PCBM mixture with a weight ratio 1:0.8, results from time-resolved optical reflectance spectroscopy reveal a solute-rich surface layer with PCBM enrichment towards the air-liquid interface, which eventually condensed into the final film after the solvent-rich bottom layer diminished, formed during the early stage of spin coating. The largely fixed vertical composition within the surface layer then leads to a distinct structural evolution at the surface from that in the bulk film through local segregation after the film vitrificated, featured by a relatively suppressed crystallization of P3HT which consequently delays and prolongs the concomitant coalescence of PCBM. Complementary results of solution containing equal amount of P3HT and PCBM showing an overall decreased degree of heterogeneity and extended growth plateaus of both crystallinity and invariant after PCBM established fractal structures throughout the film at both incident angles suggest that the increasing content of fullerene further inhibits the segregation of P3HT and PCBM, confirming the composition dependency of structural development.

    摘要………………………………………………………………………………………… I ABSTRACT……………………………………………………………………………………… II CONTENTS……………………………………………………………………………………… III LIST OF FIGURES…………………………………………………………………………… IV LIST OF TABLES……………………………………………………………………………… VI 1.Introduction………………………………………………………………………………… 1 1.1 Background………………………………………………………………………………… 1 1.2 Objective and approach……………………………………………………………………… 1 2.Experimental Details………………………………………………………………………… 2 3.Data Analysis………………………………………………………………………………… 2 3.1 GIWAXS analysis…………………………………………………………………………… 2 3.2 Optical reflectivity analysis………………………………………………………………… 3 3.3 GISAXS analysis…………………………………………………………………………… 3 4.Results and Discussion……………………………………………………………………… 4 5.Conclusion………………………………………………………………………………… 15 References………………………………………………………………………………………… 16 Appendix A. Data reduction for GIWAXS……………………………………………………… 17 Appendix B. Data reduction for GISAXS………………………………………………………… 18 Appendix C. Dependence P3HT crystallization on P3HT/PCBM weight ratio………………… 19

    1. Li, G.; Zhu, R.; Yang, Y., Nature photonics 2012, 6 (3), 153-161.
    2. Liao, H.-C.; Tsao, C.-S.; Lin, T.-H.; Chuang, C.-M.; Chen, C.-Y.; Jeng, U.-S.; Su, C.-H.; Chen, Y.-F.; Su, W.-F., Journal of the American Chemical Society 2011, 133 (33), 13064-13073.
    3. Yin, W.; Dadmun, M., ACS nano 2011, 5 (6), 4756-4768.
    4. Kiel, J. W.; Eberle, A. P.; Mackay, M. E., Physical review letters 2010, 105 (16), 168701.
    5. Wu, W. R.; Su, C. J.; Chuang, W. T.; Huang, Y. C.; Yang, P. W.; Lin, P. C.; Chen, C. Y.; Yang, T. Y.; Su, A. C.; Wei, K. H., Advanced Energy Materials 2017.
    6. Chou, K. W.; Yan, B.; Li, R.; Li, E. Q.; Zhao, K.; Anjum, D. H.; Alvarez, S.; Gassaway, R.; Biocca, A.; Thoroddsen, S. T., Advanced Materials 2013, 25 (13), 1923-1929.
    7. Van Franeker, J. J.; Westhoff, D.; Turbiez, M.; Wienk, M. M.; Schmidt, V.; Janssen, R. A., Advanced Functional Materials 2015, 25 (6), 855-863.
    8. Na, J. Y.; Kang, B.; Lee, S. G.; Cho, K.; Park, Y. D., ACS applied materials & interfaces 2016, 9 (11), 9871-9879.
    9. Emslie, A. G.; Bonner, F. T.; Peck, L. G., Journal of Applied Physics 1958, 29 (5), 858-862.
    10. Meyerhofer, D., Journal of Applied Physics 1978, 49 (7), 3993-3997.
    11. Liu, H.-J.; Jeng, U.-S.; Yamada, N. L.; Su, A.-C.; Wu, W.-R.; Su, C.-J.; Lin, S.-J.; Wei, K.-H.; Chiu, M.-Y., Soft Matter 2011, 7 (19), 9276-9282.
    12. Kiel, J. W.; Kirby, B. J.; Majkrzak, C. F.; Maranville, B. B.; Mackay, M. E., Soft Matter 2010, 6 (3), 641-646.

    QR CODE