簡易檢索 / 詳目顯示

研究生: 李岱亭
Lee, Tai-Ting
論文名稱: 探討 Fis1 對粒線體型態以及蛋白質恆定的影響
Role of Fis1 in determining mitochondrial morphology and regulating protein homeostasis.
指導教授: 陳俊宏
Chen, Chun-Hong
汪宏達
Wang, Horng-Dar
口試委員: 詹智強
Chan, Chih-Chiang
張壯榮
Chan, Chuang-Rung
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 71
中文關鍵詞: 粒線體聚集體電子傳遞鏈蛋白質恆定
外文關鍵詞: Mitochondria, Aggresome, ETC, Protein homeostasis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 粒線體透過粒線體的融合和分裂以維持生理機制的恆定性。目前已知有幾種關鍵蛋白參與這些動態過程,包括參與融合機制的Mitofusin 1和Optic Atrophy 1以及參與分裂機制的Drp1和Fis1。然而,Fis1在黑腹果蠅中的確切功能仍未能完全明朗。進一步調查Fis1的作用可能有助於提高我們對粒線體動態平衡的認識。在這項研究中,我們使用果蠅(Drosophila melanogaster)作為模式生物來探索Fis1蛋白的功能。我們發現在果蠅的四種Fis1的蛋白異構體中,長度較長的兩個蛋白異構體與哺乳類的Fis1高度相似。此外,我們採用四種Fis1蛋白異構體分別表現於果蠅胸腔的肌肉中,並且發現具有較長胺基酸序列的Fis1蛋白異構體的表現量較為穩定。被過度表現的長鏈Fis1於肌肉中會形成囊泡狀結構
    ,且此結構中充滿了被泛素化(ubiquitinated protein)的蛋白。另一方面,我們還在人類肺腺癌上皮細胞A549中表現高含量的Fis1,並發現被過度表現的Fis1會形成囊泡狀結構,且其含有聚集體(aggresome)標記物HDAC6蛋白。此外,我們發現fis1基因的突變會導致果蠅中泛素化蛋白的累積。這些結果表明Fis1可能參與聚集體的組成,進而調控果蠅的蛋白質恆定機制。此外,Fis1突變使果蠅壽命減少以及活動能力的降低,表示粒線體功能可能受到損害。同時,我們還發現Fis1突變的果蠅體內的活性氧化物(ROS)的含量在老化過程中較野生型果蠅升高的還快。利用原態膠體電泳法,我們發現Fis1的缺失造成果蠅呼吸傳遞鏈中復合物I的蛋白質表現量降低,這意味著ROS的升高與複合物I受損後的電子洩漏有關。綜合以上實驗結果,我們發現Fis1不直接參與粒線體裂變過程,但有助於維持果蠅的粒線體完整性和蛋白質恆定。Fis1如何保持復合物I結構與功能的完整性以及它在聚集體形成中所起的作用仍需要進一步研究。


    Mitochondria undergo mitochondrial fusion and fission in order to maintain physiological homeostasis. There are several key proteins known to be involved in these dynamic processes, including Mitofusin 1 and Opa1 in fusion as well as Drp1 and Fis1 in fission. The exact function of Fis1 in Drosophila melanogaster remains elusive: Further investigation into the role play by Fis1 could help to improve our understanding of mitochondrial fission. In this study, we used Drosophila melanogaster as a model to explore the function of Fis1. We found that in Fis1’s four protein splicing forms of flies, the two longer splicing forms are highly similar to the mammalian Fis1. In addition, we introduced different splicing forms of Fis1 into fly muscle and found the two stable forms of endogenous Fis1 were long forms. Moreover, high levels of long form Fis1 form an aggresome-like structure that recruited ubiquitinated proteins into the inclusion structure. On the other hand, we also found high levels of Fis1 in adenocarcinomic human alveolar basal epithelial cells, A549 cells, which enclosed the aggresome marker HDAC6 and formed the inclusion structure. Moreover, we found that fis1 mutations (Fis1 knockout) caused the aggregation of severe ubiquitinated proteins in flies. These results suggest Fis1 may play a role in protein homeostasis as an assembly of aggresomes. Furthermore, Fis1 mutants showed reduced life span and mobility, suggestive of dysfunctional mitochondria. We also found an elevation of Reactive oxygen species (ROS) during aging. Using a blue native gel assay, we showed a reduced protein level on complex I in the respiratory chain, implying that the elevation of ROS is associated with the leakage of electrons from an impaired complex I. Furthermore, we found that the deficit on the respiratory chain may lead to a decreased respiration rate in aged flies. In summary, we found that Fis1 is not directly involved in the mitochondrial fission process but helps to maintain mitochondrial integrity and protein homeostasis in flies. How Fis1 maintains Complex I integrity and its role in aggresome formation warrants further investigation.

    中文摘要 I Abstract II List of figures VII List of tables VIII List of abbreviations IX Introduction 1 1 Mitochondria 2 2 The role of Fis1 7 3 Mitochondrial dysfunction and disease 8 4 Protein homeostasis 10 Aims of thesis 13 Materials and Methods 14 Drosophila genetics and stains. 14 Lifespan assay. 14 Behavior assay -Climbing assay. 14 Western Blot. 15 1. Protein extraction. 15 2. Protein concentration. 15 3. Protein sample preparation. 15 4. SDS-PAGE. 16 5. Transfer. 16 6. Hybridization. 16 7. Stripping. 17 Adult Drosophila melanogaster muscle dissection and immunofluorescence. 17 Paraffin section of muscle 18 Mammalian A549 cell culture and plasmid 18 Cell immunofluorescence 19 Mitochondria isolation 19 Blue native gel 20 Proteomic analysis 20 1. Sample Preparation for Proteome 20 2. Dimethyl Labeling of Peptides 21 3. Strong cation exchange (SCX) chromatography. 21 4. NanoLC-MS/MS Analysis 22 5. Data Analysis for proteome 22 Electron Microscopy 23 Statistical analysis 23 Results 24 fis1 has four protein isoforms with distinct functional regions; Long forms similar to mammalian Fis1. 24 Fis1 long form levels are higher than short form levels 25 Long form 2 approximately equally distributed in the cytoplasm and mitochondria 25 Fis1 L1, S1 and S2 may regulate mitochondrial morphology 26 Cytosolic Fis1 formed specific structures outside the mitochondria. 27 Cytoplasmic Long form 1 co-localized with ubiquitinated protein and the inclusion structure of Long form 2 recapitulated ubiquitinated protein. 27 The inclusion structure of Long form 2 includes Heat Shock Protein 70. 28 Human Fis1 dis-localized with mitochondria and formed inclusive vesicles or net structure in mammalian HDAC6 in A549 cell when treated with MG132. ………………………………………………………………………….…. 28 Human Fis1 formed vesicles with the aggresome marker HDAC6 in A549 cells. ……. 29 The depletion of Fis1 led to remarkable aggregation of protein during aging. 29 Loss of Fis1 shortens life span of flies in both sexes. 29 Depletion of Fis1 reduces climbing ability in young and old flies whereas overexpression of Fis1 L2 improve mobility in young flies. 30 Fis1 mutant flies demonstrated induced muscle atrophy. 30 Loss of Fis1 increased ROS level. 31 The depletion of Fis1 decreases integrity of the mitochondrial complexes in electron transport chain. 31 Discussion and conclusion 33 References 39 Figures 48 Tables 69

    Adam-Vizi, V., &Chinopoulos, C. (2006). Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends in Pharmacological Sciences, 27(12), 639–645. https://doi.org/10.1016/j.tips.2006.10.005
    Alto, N. M., Soderling, J., &Scott, J. D. (2002). Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. Journal of Cell Biology, 158(4), 659–668. https://doi.org/10.1083/jcb.200204081
    Andersen, J. K. (2004). Oxidative stress in neurodegeneration: Cause or consequence? Nature Reviews Neuroscience, 10(7), S18. https://doi.org/10.1038/nrn1434
    Bayrhuber, M., Meins, T., Habeck, M., Becker, S., Giller, K., Villinger, S., …Zeth, K. (2008). Structure of the human voltage-dependent anion channel. Proceedings of the National Academy of Sciences, 105(40), 15370–15375.
    https://doi.org/10.1073/pnas.0808115105
    Bus, J. S., Aust, S. D., &Gibson, J. E. (1976). Paraquat toxicity: proposed mechanism of action involving lipid peroxidation. Environmental Health Perspectives, Vol.16(August), 139–146.
    Carelli, V., &Chan, D. C. (2014). Mitochondrial DNA: Impacting central and peripheral nervous systems. Urology, 84(6), 1126–1142.
    https://doi.org/10.1016/j.neuron.2014.11.022
    Chan, D. C. (2006). Mitochondria: Dynamic Organelles in Disease, Aging, and Development. Cell, 125(7), 1241–1252. https://doi.org/10.1016/j.cell.2006.06.010
    Chan, D. C. (2012). Fusion and Fission: Interlinked Processes Critical for Mitochondrial Health. Annual Review of Genetics, 46(1), 265–287. https://doi.org/10.1146/annurev-genet-110410-132529
    Chen, A. Y., Xia, S., Wilburn, P., &Tully, T. (2014). Olfactory deficits in an alpha-synuclein fly model of Parkinson’s disease. PLoS ONE, 9(5).
    https://doi.org/10.1371/journal.pone.0097758
    Chen, H., &Chan, D. C. (2009). Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Human Molecular Genetics, 18(R2), 169–176. https://doi.org/10.1093/hmg/ddp326
    Chen, H., Detmer, S. A., Ewald, A. J., Griffin, E. E., Fraser, S. E., &Chan, D. C. (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. Journal of Cell Biology, 160(2), 189–200. https://doi.org/10.1083/jcb.200211046
    Chen, H., McCaffery, J. M., &Chan, D. C. (2007). Mitochondrial Fusion Protects against Neurodegeneration in the Cerebellum. Cell, 130(3), 548–562. https://doi.org/10.1016/j.cell.2007.06.026
    Chipuk, J. E., Bouchier-Hayes, L., &Green, D. R. (2006). Mitochondrial outer membrane permeabilization during apoptosis: The innocent bystander scenario. Cell Death and Differentiation, 13(8), 1396–1402. https://doi.org/10.1038/sj.cdd.4401963
    Cortopassi, G. A., &Arnheim, N. (1990). Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Research, 18(23), 6927–6933. https://doi.org/10.1093/nar/18.23.6927
    Curran, S., &Wrigley, M. (1997). Lewy bodies. The American Journal of Psychiatry, 154(9), 1322–1323. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9286208
    DeBrito, O. M., &Scorrano, L. (2008). Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature, 456(7222), 605–610. https://doi.org/10.1038/nature07534
    Enam, C., Geffen, Y., Ravid, T., &Gardner, R. G. (2018). Protein Quality Control Degradation in the Nucleus. Annual Review of Biochemistry, 87(1), 725–749. https://doi.org/10.1146/annurev-biochem-062917-012730
    Endo, T., &Yamano, K. (2010). Transport of proteins across or into the mitochondrial outer membrane. Biochimica et Biophysica Acta - Molecular Cell Research, 1803(6), 706–714. https://doi.org/10.1016/j.bbamcr.2009.11.007
    Escusa-Toret, S., Vonk, W. I. M., &Frydman, J. (2013). Spatial sequestration of misfolded proteins by a dynamic chaperone pathway enhances cellular fitness during stress. Nature Cell Biology, 15(10), 1231–1243. https://doi.org/10.1038/ncb2838
    Freeman, J. A. (2004). the Ultrastructure of the Double Membrane Systems of Mitochondria. The Journal of Cell Biology, 2(4), 353–354.
    https://doi.org/10.1083/jcb.2.4.353
    Goodell, M. A., &Rando, T. A. (2015). Mitochondrial dysfunction and longevity in animals: Untangling the knot. Science, 350(6265), 1204–1207. https://doi.org/10.1126/science.aab3388
    Greene, J. C., Whitworth, A. J., Kuo, I., Andrews, L. A., Feany, M. B., &Pallanck, L. J. (2003). Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proceedings of the National Academy of Sciences, 100(7), 4078–4083. https://doi.org/10.1073/pnas.0737556100
    Guo, M. (2012). Drosophila as a model to study mitochondrial dysfunction in Parkinson’s disease. Cold Spring Harbor Perspectives in Medicine, 2(11), 1–17. https://doi.org/10.1101/cshperspect.a009944
    Harman, D. (1956). Aging: a theory on free radical radiation chemistry. Journal of Gerontology, 11, 298–300.
    Jin, S. M., Lazarou, M., Wang, C., Kane, L. A., Narendra, D. P., &Youle, R. J. (2010). Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. Journal of Cell Biology, 191(5), 933–942. https://doi.org/10.1083/jcb.201008084
    Johnston, J. A., Ward, C. L., &Kopito, R. R. (2012). A Cellular Response to Misfolded Proteins Aggresomes : Cell, 143(7), 1883–1898. https://doi.org/10.1083/jcb.143.7.1883
    Joshi, A. U., Saw, N. L., Shamloo, M., &Mochly-Rosen, D. (2018). Drp1/Fis1 interaction mediates mitochondrial dysfunction, bioenergetic failure and cognitive decline in Alzheimer's disease. Oncotarget, 9(5), 6128–6143.
    https://doi.org/10.18632/oncotarget.23640
    Kobayashi, S., Tanaka, A., &Fujiki, Y. (2007). Fis1, DLP1, and Pex11p coordinately regulate peroxisome morphogenesis. Experimental Cell Research, 313(8), 1675–1686. https://doi.org/10.1016/j.yexcr.2007.02.028
    Kovacs, J. J., Yao, T.-P., Kawaguchi, Y., Kovacs, J. J., Mclaurin, A., Vance, J. M., …Yao, T.-P. (2003). The Deacetylase HDAC6 Regulates Aggresome Formation and Cell Viability in Response to Misfolded Protein Stress. Cell, 115, 727–738. https://doi.org/10.1016/S0092-8674(03)00939-5
    Kühlbrandt, W. (2015). Structure and function of mitochondrial membrane protein complexes. BMC Biology, 13(1), 1–11. https://doi.org/10.1186/s12915-015-0201-x
    Labbé, K., Murley, A., &Nunnari, J. (2014). Determinants and Functions of Mitochondrial Behavior. Annual Review of Cell and Developmental Biology, 30(1), 357–391. https://doi.org/10.1146/annurev-cellbio-101011-155756
    Lambeth, J. D., &Neish, A. S. (2013). Nox Enzymes and New Thinking on Reactive Oxygen: A Double-Edged Sword Revisited. Annual Review of Pathology: Mechanisms of Disease, 9(1), 119–145. https://doi.org/10.1146/annurev-pathol-012513-104651
    López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., &Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217.
    https://doi.org/10.1016/j.cell.2013.05.039
    Määttänen, P., Gehring, K., Bergeron, J. J. M., &Thomas, D. Y. (2010). Protein quality control in the ER: The recognition of misfolded proteins. Seminars in Cell and Developmental Biology, 21(5), 500–511.
    https://doi.org/10.1016/j.semcdb.2010.03.006
    Manley, G. (2013). Mitochondrial dynamics and division in budding yeast, 71(2), 233–236. https://doi.org/10.1038/mp.2011.182.doi
    Manuscript, A. (2011). Dawson et al, 2011-Modèles animaux génétiques, 66(5), 646–661. https://doi.org/10.1016/j.neuron.2010.04.034.Genetic
    McBride, H. M., Neuspiel, M., &Wasiak, S. (2006). Mitochondria: More Than Just a
    Powerhouse. Current Biology, 16(14), 551–560.
    https://doi.org/10.1016/j.cub.2006.06.054
    McLelland, G. L., Soubannier, V., Chen, C. X., McBride, H. M., &Fon, E. A. (2014). Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO Journal, 33(4), 282–295. https://doi.org/10.1002/embj.201385902
    Milone, M., Younge, B. R., Wang, J., Zhang, S., &Wong, L. J. (2009). Mitochondrial disorder with OPA1 mutation lacking optic atrophy. Mitochondrion, 9(4), 279–281. https://doi.org/10.1016/j.mito.2009.03.001
    Mishra, P., &Chan, D. C. (2016). Metabolic regulation of mitochondrial dynamics. Journal of Cell Biology, 212(4), 379–387. https://doi.org/10.1083/jcb.201511036
    Mozdy, A. D., McCaffery, J. M., &Shaw, J. M. (2000). Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. Journal of Cell Biology, 151(2), 367–379. https://doi.org/10.1083/jcb.151.2.367
    Neuspiel, M., Schauss, A. C., Braschi, E., Zunino, R., Rippstein, P., Rachubinski, R. A., …McBride, H. M. (2008). Cargo-Selected Transport from the Mitochondria to Peroxisomes Is Mediated by Vesicular Carriers. Current Biology, 18(2), 102–108. https://doi.org/10.1016/j.cub.2007.12.038
    Ni, H. M., Williams, J. A., &Ding, W. X. (2015). Mitochondrial dynamics and mitochondrial quality control. Redox Biology, 4, 6–13. https://doi.org/10.1016/j.redox.2014.11.006
    Nikoletopoulou, V., Markaki, M., Palikaras, K., &Tavernarakis, N. (2013). Crosstalk between apoptosis, necrosis and autophagy. Biochimica et Biophysica Acta - Molecular Cell Research, 1833(12), 3448–3459. https://doi.org/10.1016/j.bbamcr.2013.06.001
    Okatsu, K., Koyano, F., Kimura, M., Kosako, H., Saeki, Y., Tanaka, K., &Matsuda, N. (2015). Phosphorylated ubiquitin chain is the genuine Parkin receptor. Journal of Cell Biology, 209(1), 111–128. https://doi.org/10.1083/jcb.201410050
    Osellame, L. D., Blacker, T. S., &Duchen, M. R. (2012). Cellular and molecular mechanisms of mitochondrial function. Best Practice and Research: Clinical Endocrinology and Metabolism, 26(6), 711–723.
    https://doi.org/10.1016/j.beem.2012.05.003
    Otera, H., Wang, C., Cleland, M. M., Setoguchi, K., Yokota, S., Youle, R. J., &Mihara, K. (2010). Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. Journal of Cell Biology, 191(6), 1141–1158. https://doi.org/10.1083/jcb.201007152
    Paradies, G., Petrosillo, G., Pistolese, M., DiVenosa, N., Federici, A., &Ruggiero, F. M. (2004). Decrease in Mitochondrial Complex I Activity in Ischemic/Reperfused Rat Heart: Involvement of Reactive Oxygen Species and Cardiolipin. Circulation Research, 94(1), 53–59. https://doi.org/10.1161/01.RES.0000109416.56608.64
    Pellegrino, M. A., Desaphy, J. F., Brocca, L., Pierno, S., Camerino, D. C., &Bottinelli, R. (2011). Redox homeostasis, oxidative stress and disuse muscle atrophy. Journal of Physiology, 589(9), 2147–2160. https://doi.org/10.1113/jphysiol.2010.203232
    Powers, S. K., Kavazis, A. N., &DeRuisseau, K. C. (2005). Mechanisms of disuse muscle atrophy: role of oxidative stress. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 288(2), R337–R344. https://doi.org/10.1152/ajpregu.00469.2004
    Pozo Devoto, V. M., &Falzone, T. L. (2017). Mitochondrial dynamics in Parkinson’s disease: a role for α-synuclein? Disease Models & Mechanisms, 10(9), 1075–1087. https://doi.org/10.1242/dmm.026294
    Ray, P. D., Huang, B.-W., &Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 24(5), 981–990. https://doi.org/10.1016/j.cellsig.2012.01.008
    Reid, M. B., Judge, A. R., &Bodine, S. C. (2014). CrossTalk opposing view: The dominant mechanism causing disuse muscle atrophy is proteolysis. Journal of Physiology, 592(24), 5345–5347. https://doi.org/10.1113/jphysiol.2014.279406
    Rizzuto, R., Bernardi, P., &Pozzan, T. (2000). Mitochondria as all-round players of the calcium game. Journal of Physiology, 529(1), 37–47.
    https://doi.org/10.1111/j.1469-7793.2000.00037.x
    Romanello, V., &Sandri, M. (2016). Mitochondrial quality control and muscle mass maintenance. Frontiers in Physiology, 6(JAN), 1–21.
    https://doi.org/10.3389/fphys.2015.00422
    Schrader, M., &Pellegrini, L. (2017). The making of a mammalian peroxisome, version 2.0: Mitochondria get into the mix. Cell Death and Differentiation, 24(7), 1148–1152. https://doi.org/10.1038/cdd.2017.23
    Sebastián, D., Palacín, M., &Zorzano, A. (2017). Mitochondrial Dynamics: Coupling Mitochondrial Fitness with Healthy Aging. Trends in Molecular Medicine, 23(3), 201–215. https://doi.org/10.1016/j.molmed.2017.01.003
    Seo, A. Y., Joseph, A.-M., Dutta, D., Hwang, J. C. Y., Aris, J. P., &Leeuwenburgh, C. (2010). New insights into the role of mitochondria in aging: mitochondrial dynamics and more. Journal of Cell Science, 123(15), 2533–2542.
    https://doi.org/10.1242/jcs.070490
    Sha, D., Chin, L. S., &Li, L. (2009). Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-κB signaling. Human Molecular Genetics, 19(2), 352–363. https://doi.org/10.1093/hmg/ddp501
    Shen, Q., Yamano, K., Head, B. P., Kawajiri, S., Cheung, J. T. M., Wang, C., …van derBliek, A. M. (2014). Mutations in Fis1 disrupt orderly disposal of defective mitochondria. Molecular Biology of the Cell, 25(1), 145–159. https://doi.org/10.1091/mbc.E13-09-0525
    Sin, O., &Nollen, E. A. A. (2015). Regulation of protein homeostasis in neurodegenerative diseases: The role of coding and non-coding genes. Cellular and Molecular Life Sciences, 72(21), 4027–4047. https://doi.org/10.1007/s00018-015-1985-0
    Soubannier, V., McLelland, G. L., Zunino, R., Braschi, E., Rippstein, P., Fon, E. A., &McBride, H. M. (2012). A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Current Biology, 22(2), 135–141. https://doi.org/10.1016/j.cub.2011.11.057
    Soubannier, V., Rippstein, P., Kaufman, B. A., Shoubridge, E. A., &McBride, H. M. (2012). Reconstitution of Mitochondria Derived Vesicle Formation Demonstrates Selective Enrichment of Oxidized Cargo. PLoS ONE, 7(12). https://doi.org/10.1371/journal.pone.0052830
    Stefanova, N. A., Ershov, N. I., Maksimova, K. Y., Muraleva, N. A., Tyumentsev, M. A., &Kolosova, N. G. (2019). The rat prefrontal-cortex transcriptome: Effects of aging and sporadic Alzheimer’s disease-like pathology. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 74(1), 33–43. https://doi.org/10.1093/gerona/gly198
    Sugiura, A., Mattie, S., Prudent, J., &Mcbride, H. M. (2017). Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature, 542(7640), 251–254. https://doi.org/10.1038/nature21375
    Tilokani, L., Nagashima, S., Paupe, V., &Prudent, J. (2018). Mitochondrial dynamics: overview of molecular mechanisms. Essays In Biochemistry, 62(3), 341–360. https://doi.org/10.1042/ebc20170104
    Trachootham, D., Alexandre, J., &Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nature Reviews Drug Discovery, 8(7), 579–591. https://doi.org/10.1038/nrd2803
    Truban, D., Hou, X., Caulfield, T. R., Fiesel, F. C., &Springer, W. (2017). PINK1, Parkin, and Mitochondrial Quality Control: What can we Learn about Parkinson’s Disease Pathobiology? Journal of Parkinson’s Disease, 7(1), 13–29. https://doi.org/10.3233/JPD-160989
    Turrens, J. F. (2003). Mitochondrial formation of reactive oxygen species. Journal of Physiology, 552(2), 335–344. https://doi.org/10.1113/jphysiol.2003.049478
    Twig, G., Elorza, A., Molina, A. J. A., Mohamed, H., Wikstrom, J. D., Walzer, G., …Shirihai, O. S. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO Journal, 27(2), 433–446. https://doi.org/10.1038/sj.emboj.7601963
    Wang, S., Song, J., Tan, M., Albers, K. M., &Jia, J. (2012). Mitochondrial fission proteins in peripheral blood lymphocytes are potential biomarkers for Alzheimer’s disease. European Journal of Neurology, 19(7), 1015–1022. https://doi.org/10.1111/j.1468-1331.2012.03670.x
    Xian, H., Yang, Q., Xiao, L., Shen, H. M., &Liou, Y. C. (2019). STX17 dynamically regulated by Fis1 induces mitophagy via hierarchical macroautophagic mechanism. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-10096-1
    Yoon, Y., Krueger, E. W., Oswald, B. J., &McNiven, M. A. (2003). The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Molecular and Cellular Biology, 23(15), 5409–5420. https://doi.org/10.1128/MCB.23.15.5409
    Yu, R., Jin, S., Lendahl, U., Nistér, M., &Zhao, J. (2019). Human Fis1 regulates mitochondrial dynamics through inhibition of the fusion machinery. The EMBO Journal, 38(8), e99748. https://doi.org/10.15252/embj.201899748
    Zemirli, N., Morel, E., &Molino, D. (2018). Mitochondrial dynamics in basal and stressful conditions. International Journal of Molecular Sciences, 19(2), 1–19. https://doi.org/10.3390/ijms19020564

    QR CODE