研究生: |
施清雲 Cing-Yun Shin |
---|---|
論文名稱: |
發展寬能隙氧化鋅透明薄膜電晶體 Development of wideband ZnO-based transparent thin-film transistors |
指導教授: |
黃惠良
Huey-Liang Hwang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 71 |
中文關鍵詞: | 氧化鋅 、透明薄膜電晶體 、射頻磁控濺鍍 、寬能隙 、底部閘極結構 |
外文關鍵詞: | Znic Oxide, Transparent thin film transistors, rf magnetron sputtering, wide-bandgap, Bottom-gate structure |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
論文摘要
隨著液晶平面顯示器科技日新月異, 近年來在液晶平面顯示器已被大眾廣泛的接受而且其應用面也持續的成長中. 主要在於大尺寸顯示器驅動元件技術上更需要更多的技術去改進與改良. 在電子科技工業上一項重要的挑戰, 關於發展全透明光電元件上, 用於主動式液晶顯示器(AMLCDs)中提供一個方法去替代薄膜電晶體裡的非晶矽(a-si)或多晶矽(poly-si), 而使用透明氧化鋅薄膜電晶體可以改善開孔畫素,進而減少功率損耗與避免元件複雜的製作流程, 此外還可做成全透明的電子元件.
本論文研究目的為製造與發展一個高透明薄膜電晶體元件(ZnO-TFT), 在氧化鋅自從發現室溫中氧化鋅在紫外線的行為, 氧化鋅已經變成受吸引的寬能隙半導體材料. 由於氧化鋅是透明材料, 可以利用氧化鋅透明的主要優點, 用在薄膜電晶體(TFT)裡的主動通道層, 去實現透明薄膜電晶體(TTFT).
在於我們實驗研究上結構用Bottom-gate 薄膜電晶體, 把氧化鋅當作主動通道層, 在製程溫度300度與製程壓力30mtorr中用射頻磁控濺鍍沉積氧化鋅. 使用雙層絕緣當作閘極絕緣層 (組成為氮化矽/氧化矽),從實驗可發現, 雙絕緣層可以有效的阻止漏電流使得氧化鋅薄膜電晶體可以成功的動作, 實驗結果可以看出, 本論文製造出氧化鋅薄膜電晶體特性為, 穿透率在70%左右, 為n通道空乏型電晶體的特徵, 所有的實驗結果也可以知道製造透明電晶體, 操作在可見光地方是可行性的, 未來還有很大的發展空間, 相信將來會有更寬廣, 更多采多姿的消費性產品運用.
Abstract
The technological advancement of liquid crystal displays (LCDs) is changing with time everyday. Recently, it has started to dominate the display devices in a large scale and this has urged for more technological improvement. One challenging area for the electronics industry is the development of fully transparent optoelectronics devices. Substituting thin film transistors (TFTs) made of amorphous Si (a-Si) or polycrystalline Si (poly-Si) that are currently used in active-matrix liquid crystal displays (AMLCDs) with transparent ZnO-TFTs would enable improvement in the opening of pixels, resulting in a reduction in power consumption and avoidance of complicated device processing. In addition to that it would result in an all transparent electronics device.
The objective of the present thesis is to fabricate a highly transparent TFT device, with a focus on ZnO-TFT. ZnO has become an attractive wide band gap semiconductor since the demonstration of ultraviolet laser action at room temperature. ZnO can be used as an active channel layer for the realization of transparent thin-film transistors (TTFTs).
In this work bottom-gate-type thin film transistors using ZnO as an active channel layer (ZnO–TFT) have been constructed. The ZnO layers were deposited using rf magnetron sputtering at 300 °C at a working pressure of 30mTorr. A double layer gate insulator consisting of SiO2 and SiNx was effective in suppressing leakage current and enabling the ZnO–TFT to operate successfully. The optical transmittance of ZnO–TFTs fabricated on glass was more than 70% in the visible portion of the electromagnetic spectrum. The prototypical n-channel, depletion mode TFT characteristics, and these results show that it is possible to fabricate a transparent TFT that can even be operated in the presence of visible light. We believe that the consumer application will be further evolved widely based on this development.
Reference
[1.1] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H.Tabata, and T. Kawai, Appl. Phys. 93 (2003) 1624.
[1.2] R. L. Hoffman, B. J. Norris, and J. F. Wager, Appl. Phys. 82 (2003) 733.
[1.3] P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, Appl. Phys. 82 (2003) 1117.
[1.4] J. Nishii, F. M. Hossain, S. Takagi, T. Aita, K. Saikusa, Y. Ohmaki, I. Ohkubo, A. Ohtomo, T. Fukumura, F. Matsukura, Y. Ohno, H. Koinuma, H. Ohno, and M. Kawasaki, Jpn. J. Appl. Phys. 42 (2003) L347.
[1.5] H. S. Bae, J. H. Yoon, J. H. Kim, and S. Im, Appl. Phys. 83 (2003) 5313.
[1.6] B. J. Norris, J. Anderson, J. F. Wager, and D. A. Keszler, J. Phys. D 36 (2003) L105.
[1.7] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science. 300 (2003) 1269.
[1.8] Shanthi E, Banerjee A, Chopra KL. Thin Solid Films. 108 (1983) 333.
[1.9] Chang SJ, Su YK, Shei YP. Vac Sci Technol A. 13(3) (1995) 385.
[1.10] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, Nature. 389 (1997) 939.
[1.11] H. Morko, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76 (1994) 1363.
[1.12] H. Yanagi, T. Hase, S. Ibuki, K. Ueda, and H. Hosono, Appl. Phys. Lett. 78 (2001) 1583.
[1.13] M. W. J. Prins, K. Grosse-Holz, G. Mller, J. F. M. Cillessen, and J. B. Giesbers, Appl. Phys. Lett. 68 (1996) 3650.
[1.14] K. Grosse-Holz, J. F. M. Cillessen, M. W. J. Prins, P. W. M. Blom, R. M. Wolf, L. F. Feiner, and R. Waser, Mat. Res. Soc. Symp. Proc. 401 (1996) 67.
[1.15] J. F. M. Cillessen, P. W. M. Blom, R. M. Wolf, and J. B. Giesbers, United States Patent Number 5,744,864. (1998).
[1.16] J. F. M. Cillessen, P. W. M. Blom, R. M. Wolf, and J. B. Giesbers, “Semiconductor device provided with transparent switching element.” International Patent Application Number PCT/IB96/00749, International Publication Number WO 97/06554. (1997).
[1.17] S. Kobayashi, S. Nonomura, T. Ohmori, K. Abe, S. Hirata, T. Uno, T. Gotoh, S. Nitta, and S. Kobayashi, Appl. Surf. Sci. 113/114 (1997) 480.
[1.18] M. Kawasaki and H. Ohno, “Transistor and semiconductor device.” European Patent Application Number 99972374.5 (International Application Number PCT/JP99/06300, International Publication Number WO 00/30183). (2001).
[2.1] J. R. Hollahan and R. S. Rosler, in “Thin Film Processes”(J. L. Vossen and W. Kern. eds.), Ch. IV-1. Academic Press, New York, (1978).
[2.2] B. Gorowitz, T. B. Gorczyca, and R. J. Saia, Solid State Technology. 28(6) (1985) 197.
[2.3] A. C. Adams. Solid Stale Technology 26(4), 135 (1983). Also in “VLSI Technology” (S. Sze, ed.),Chapter3. McGraw-Hill. New York, (1983).
[2.4] Sherman A. Chemical vapor deposition for microelectronics. Park Ridge (NJ): Noyes; (1987).
[2.5] Hess DW, Graves DB. In: Hitchman ML, Jensen KF, editors. CVD principles and applications. San Diego: Academic Press; 1993. p. 387 [Chapter 7].
[2.6] Scheib M, Schroder B, Oechsner HY. J Non-Cryst Solids. 200 (1996) 895.
[2.7] Dehbi-Alaoui A. Vacuum. 46 (1995) 1305.
[2.8] Bell AT. Solid State Technol. 21 (1978) 89.
[2.9] MsDavid EW, Cermak V, Dalgarno A, Ferguson EE, Friedman L. Ion molecule reactions. New York: Wiley; (1970).
[2.10] Catherine Y. In: Mathad GS, Schwartz GC, Smolinsky G, editors. Plasma processing. Pennington: Electrical Society, (1985) 317.
[2.11] S. Berg, H. O. Blom, T. Larsson and C. Nender: J. Vac. Sci. Technol. A, 5 (1987) 202.
[2.12] S. Berg, T. Larsson, C. Nender and H. O. Blom, J. Appl. Phys, 63 (1988) 887.
[2.13] M. Ohring: Materials Science of Thin Films (Academic Press, San
Diego, 2002) 2nd ed.
[2.14] Li Y, Tompa GS, Liang S, Gorla C, Lu C, Doyle J. J Vac Sci Techol A. 15 (1997) 1663.
[2.15] Liu M, Kitai AH, Mascher P. J Lumin. 54 (1992) 35.
[2.16] Palmer DW. Available from: http://www.semiconductors.co.uk, (2002).
[2.17] T. Minami, T. Miyata, and T. Yamamoto, Surf. and Coatings Technol. 108-109 (1998) 583.
[2.18] R. K. Swank, Phys. Rev. 153 (1967) 844.
[2.19] S. M. Sze, Physics of semiconductor devices. New York: John Wiley & Sons, second ed., (1981).
[2.20] V. Srikant and D. R. Clarke, J. Appl. Phys. 83 (1998) 5447.
[2.21] R. G. Gordon, “Criteria for choosing transparent conductors,” MRS Bulletin, (2000) 52.
[2.22] D. C. Look, Mat. Sci. and Eng. B, B80 (2001) 383.
[2.23] D. H. Zhang and D. E. Brodie, Thin Solid Films. 261 (1995) 334.
[2.24] D. H. Zhang, J. Phys. D: Appl. Phys. 28 (1995) 1273.
[2.25] Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, and Y. Ohya, Jpn. J. Appl. Phys. 33 (1994) 6611.
[2.26] S. A. Studenikin, N. Golego, and M. Cocivera, J. Appl. Phys. 87 (2000) 2413.
[3.1] R. A. Smith, Wave mechanics of crystalline solids. London: Chapman and Hall, second ed. (1969).
[3.2] J. I. Pankove, Optical processes in semiconductors. New York: Dover Publications, (1971).
[3.3] P. Y. Yu and M. Cardona, Fundamentals of Semiconductors. Berlin: Springer, (1996).
[3.4] R. H. Bube, Electrons in solids. New York: Academic Press, (1981).
[3.5] D. K. Schroder, Semiconductor material and device characterization. New York:John Wiley & Sons, second ed., (1998).
[3.6] L. J. van der Pauw, “A method of measuring specific resistivity and hall effectof discs of arbitrary shape,” Philips Res. Rep. 13 (1958) 1.
[3.7] L. J. van der Pauw, “A method of measuring the resistivity and hall coefficient on lamellae of arbitrary shape,” Philips Technical Rev. 20 (1958/1959) 220.
[3.8] R. Chwang, B. J. Smith, and C. R. Crowell, “Contact size effects on the van der Pauw method for resistivity and Hall coefficient measurement,” Solid State Electron. 17 (1974) 1217.
[3.9] S. Park, D. A. Keszler, M. M. Valencia, R. L. Hoffman, J. P. Bender, and J. F. Wager, “Transparent p-type conducting BaCu2S2 films,” Appl. Phys. Lett. 80 (2002).
[3.10] S. M. Sze, Physics of semiconductor devices. New York: John Wiley & Sons, second ed. (1981).
[3.11] A. C. Tickle, Thin film transistors. New York: John Wiley & Sons, (1969).