簡易檢索 / 詳目顯示

研究生: 陳健賢
J. S. Chen
論文名稱: 管道截面寬高比與壁面魚鱗凹穴對具肋條渦輪機葉片內冷卻流道熱流場特性影響之研究
指導教授: 劉通敏
T. M. Liou
張始偉
S. W. Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 108
中文關鍵詞:
外文關鍵詞: heat
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究為高旋轉速下具45度交錯肋條矩形通道沿壁面中心線熱傳量測,其寬高比(AR)分別為1,2和4。雷諾數(Re)為5000~10000,旋轉速(Ro)為0~2,旋轉浮力(Bu)為0.0083~8.879。本實驗主在探討不同寬高比在高旋轉數下對熱傳的影響。當寬高比(AR)從1增加到4時,不管在迎風面以及背風面其Nu/Nu0值會隨著AR增加變為減少,此趨勢跟之前文相同獻結果相同,但在高旋轉下(Ro>1),矩形通道(AR=2) 之Nu/Nu0值會大於正方形通(AR=1) ;此一趨勢有別於前人文獻於低旋轉數(Ro<0.2)之研究。再者經由實驗發現在高旋轉數下,旋轉浮力對熱傳增益影響在AR=1之正方形管道為增加效益,但在AR=2 和4之矩形通道旋轉浮力對熱傳增益影響則為降低熱傳效益,此一趨勢未見先前文獻報導。此熱傳數據結果對將來渦輪機葉片設計者有相當幫助。

    另一研究為雷射都卜勒測速技術(LDV)量測兩對立壁面具攻角11度、凹穴深與測試段高度比值0.1、凹穴節距與高度比10以及凹穴直徑與節距比1之魚鱗(Scales)凹穴陣列矩形冷卻流道內流場結構。冷卻流道為水力直徑18mm、寬高比8:1之矩形狹窄管道,旨在模擬渦輪葉片葉形尾端內冷卻流道。實驗之工作流體為空氣,以水力直徑與流道截面平均速度為特徵長度與速度之雷諾數(Re)固定為10000。量測結果以軸向平均速度分佈圖、
    橫向平均速度圖、紊流強度及紊流動能來詮釋所探討之流場特性,並且用流場結果來合理解釋與前人熱傳量測結果之相關性。本研究也用CFD計算(fluent數值方法)來跟實驗比對,其結果發現數值與實驗之趨勢相當一致,也因此更加確定本實驗的正確性。另一種流場為CFD數值模擬且Re為10000與1250以及AR近似1.5之單一魚鱗凹穴與單一半球形流場結構,由結果發現可用流場來合理的解釋熱傳增益現象,本研究另外發現單一半球形流場結構其影響範圍較單一魚鱗凹穴廣,因此可合理的解釋先前文獻單一魚鱗凹穴與單一半球形兩種不同排列疏密方式。而本文最後研究為具45度肋條加裝魚鱗魚鱗凹穴陣列之靜止(Ro=0)流場,其Re為10000、AR比為1,從結果得知一樣可以用流場結果來合理解釋熱傳增益現象。


    目錄 摘要………………………………………………………………Ι 誌謝……………………………………………………………………III 目錄……………………………………………………………………IV 圖表目錄………………………………………………………………VII 符號說明……………………………………………………………….XI 第一章 前言……………………………………………………………1 1-1 研究動機………………………………………………………1 1-2 文獻回顧………………………………………………………6 1-2-1 熱傳相關文獻…………………………………6 1-2-2 流場相關文獻……………………………………8 1-3 文獻總結 ……………………………………………………9 1-4 研究目的……………………………………………………11 1-5 統御方程式與無因次化公式推導 …………………………13 1-5-1統御方程式推導……………………………………13 1-5-1-1 轉動運算子(Rotation Operator)定義………13 1-5-1-2 移動座標系統中的速度與加速度……………15 1-5-1-3 統御方程式……………………………………17 1-5-2無因次化公式推導..........................21 第二章 實驗設備與方法…………………………………….............23 2-1 雷射都卜勒測速儀………………………………………………23 2-2 光學實驗儀器…………………………………………….......26 2-2-1 光學系統-二維雷射測速儀……………………26 2-2-2 訊號處理系統…………………………………27 2-2-2-1 DOWN-MIXERS or FREQUENCY SHIFT ..27 2-2-2-2 計數式訊號處理器(counter)…………….28 2-2-3 Photodetector or Photomultiplier (光電倍增管)..29 2-2-4 微粒產生器(ATOMIZER)…………………….30 2-3 壓力量測簡介………………………………………………31 2-4 旋轉機組設備………………………………………32 2-4-1 熱傳實驗模組…………………………………34 2-4-2 流場設備圖……………………………………35 2-5 測試段實驗模型尺寸………………………………………35 2-6 熱傳實驗數據處理與實驗參數圍……………………………36 2-6-1 流場實驗參數範圍………………………………37 2-7 實驗步驟……………………………………………………39 2-7-1 靜態實驗步驟…………………………………..39 2-7-2 旋轉實驗步驟…………………………………..39 2-8 實驗誤差分析……………………………………………….40 2-8-1 熱傳實驗誤差…………………………………..40 2-8-2 流場實驗誤差…….……………………………40 第3章 結果與討論……………………………………………….41 3-1 靜止下熱傳實驗結果……………………………………….41 3-2 不同AR旋轉測試通道對熱傳影響……………………43 3-3 旋轉熱傳結果參數分析…………………………………..45 3-4 純魚鱗流場實驗之結果與討論…………………………51 3-4-1 入口量測……………………………………….51 3-4-2 週期全展…..……………………………………51 3-4-3 二次流…………..………………………………..52 3-4-4 視流法拍照……………………..……………….53 3-4-5 流場與表面熱傳的關係……………………53 3-4-6 單一魚鱗凹穴與單一半球形凹穴之數直流場計算…………………………………………………54 3-5 魚鱗流加裝45度肋條流場實驗之結果與討論……..55 3-5-1 入口量測………………………………………..55 3-5-2 平均流發展………………………………………55 3-5-3 週期全展…………………………………………55 3-5-4 二次流……………………………………………56 3-5-5 不同肋條排列方式Cp值比較…………………. 57 3-5-6 流場與表面熱傳關係…………………………58 ….. 第4章 結論與建議……………………………………………………59 4-1 熱傳主要結論…….………………………………………59 4-2 流場主要結論………….…………………………………60 4-3 文主要貢獻…...…………………………………………...62 4-4 建議………………………………………………………63 參考文獻…………...……………………………………………….64

    參考文獻

    1. R. Kiml, S. Mochizuki, A. Murata, 2001, Effects of rib arrangements on heat transfer and flow behavior in a rectangular rib-roughened passage: application to cooling of gas turbine blade trailing edge, Journal of heat transfer, Vol. 123, pp. 675-681
    2. M.E. Taslim, L. A. Bondi, D. M. Kercher, An experimental investiga- tion of heat transfer in and orthogonally rotating channel roughened with 45 deg criss-cross ribs on two opposite walls, 1991, Journal of turbomachinery, Vol 113, pp 346-353
    3. S. W. Chang, W. D. Morris , 2003, Heat transfer in a radially rotating square duct fitted with in-line transverse ribs, International Journal of Thermal Sciences, pp. 267-282
    4. C. Y. Soong, S. T. Lin, G. J. Hwang, 1991, An experimental study of convective heat transfer in radially rotating rectangular ducts, Journal of heat transfer, Vol. 113, pp. 604-611
    5. S. W. Chang, T. L. Yang, W. J. Wang, 2005, Heat transfer in a rotating twin pass Trapezoidal sectioned passage roughened by skewed ribs on two opposite walls
    6. S. W. Chang, T. M. Liou, W. H. Yeh, J. H. Hung, 2006, Heat transfer in a radially rotating square sectioned duct with two opposite walls roughened by 45-deg staggered ribs, ASME turbo Expo GT 2006 - 90153
    7. J.H. Wagner, B.V. Johnson, T.J. Hajek, 1991, Heat transfer in Rotating passages with smooth walls and radial outward flow, Journal of turbomachinery, Vol.113, pp42-51
    8. J.H. Wagner ,B.V. Johnson, R. A. Graziani, F. C. Yeh, 1992, Heat transfer in rotating serpentine passages with trips normal to the flow, Journal of Turbomachinery, Vol.114, pp847-857
    9. B.V. Johnson, J. H. Wagner, G. D. Steuber, F.C. Yeh, 1994, Heat transfer in rotating serpentine passages with trips skewed to the flow, Journal of Turbomachinery, Vol.116, pp738-744
    10. B.V. Johnson, J. H. Wagner, G. D. Steuber, F.C. Yeh, 1994, Heat transfer in rotating serpentine passages with selected model orient- ations for smooth or skewed trip walls, Journal of Turbomachinery, Vol.116, pp738-744
    11. F. Zhou, J. Lagrone, S. Acharya, 2004, Internal cooling in 4:1 AR passages at high rotation numbers, GT2004-53501
    12. JHT Editorial Board of ASME J. Heat Transfer, 1993, Journal of Heat Transfer Policy on Reporting Uncertainties in Experimental Measurements and Results, ASME J. Heat Transfer, 115, 5-6.
    13. 張始偉 博士、王唯任,2006, Heat Transfer in Rotating Twin-Pass Trapezoidal -Sectioned Passage with Two Opposite Walls Roughened by 45 Degree Ribs,國立高雄海洋科技大學航運暨管理學院輪機工程研究所碩士論文
    14. M .Yao, M .Nakatani., and K. Suzuki, 1989, “Flow Visualization and Heat Transfer experiments in a Duct with a Staggered Array of Cylinders,” Experimental Thermal and Fluid Science, Vol.2, pp.193-200.
    15. T. M. Liou,W. B. Wang, and Y. J. Chang, 1995, ”Holographic Interferometry Study of Spatially Periodic Heat Transfer in a Channel with Ribs Detached from One Wall,“ ASME Journal of Heat Transfer, Vol.117, pp.32-39.
    16. T. M. Liou and W. B. Wang, 1995, ”Laser Holographic Interferometry Study of Developing Heat Transfer in a Duct with a Detached Rib Array,” International Journal of Heat and Mass Transfer, Vol.38, No.1, pp.91-100.
    17. T. M. Liou, C. P. Yang, and H. L. Lee, 1997, “LDV Measurements of Spatially Periodic Flows over a Detached Solid-Rib Array,” Trans. ASME, Journal of Fluids Engineering, Vol. 119, pp.383-389.
    18. S. Dutta, J. C. Han, 1998, Rotational effectives on the turbine blade coolant passage heat transfer, annual review of heat transfer, Vol IX, ISBN-1567000878
    19. K.M. Iskakov, V.A. Trushin, 1985, The effect of rotation on heat transfer in the radial cooling channels of turbine blades, Teploenergetika, 32 (2), 52-55.
    20. W.D. Morris, T. Aythan, 1979, Observations on the influences of rotation on heat transfer in the coolant channels of gas turbine rotor blades, Proc. Inst. Mech. Eng., 193 (21), 303-311.
    21. S.W. Chang, and,W.D. Morris, 1998, A Comparative study of heat transfer between rotating circular smooth-walled and square rib-roughened ducts with cooling application for gas turbine rotor blades, JSME Int. J. Series B, 41, 302-315.
    22. J. A. Parsons, J. C. Han, and Zhang, Y. M., 1994, “Wall Heating Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel with 90□ Rib Turbulators,” International Journal of Heat and Mass Transfer, 37, No.9, pp. 1411-1420.
    23. S. Dutta, J. C. Han, and C. P. Lee, 1995, “Local Heat Transfer in a Rotating Two-Pass Ribbed Triangular Duct with Two Model Orientations,” International Journal of Heat and Mass Transfer, pp.708-715.
    24. J. H. Wagner, B. V. Hohnson, R. A. Graziani, and F. C. Yeh, 1992, “Heat Transfer in Rotating Serpentine Passages with Trips Normal to the Flow,” ASME Journal of Turbomachinery, 114, pp. 847-857.
    25. J. P. Bons, and J.L. Kerrebrock, 1998, “Complementary Velocity and Heat Transfer Measurements in a Rotating Cooling Passage with Smooth Walls,” ASME Paper No. 98-GT-464.
    26. T, M, Liou, C, C,Chen and M, Y, Chen, 2000, “TCLT and LDV Measurement of Heat Transfer and Fluid Flow in a Rotating Sharp Turning Duct” International Journal of Heat and Mass Transfers
    27. S. S. Hsieh, M. H. Chiang, and P. J. Chen, 1997, “Velocity Measurements and Local Heat Transfer in a Rotating Ribbed Two-Pass Square Channel with Uneven Wall Heat Flux,” ASME Paper No. 97-GT-160.
    28. S. W. Chang, T. L. Yang, W. J. Wang, 2005, Heat transfer in a rotating twin pass Trapezoidal sectioned passage roughened by skewed ribs on two opposite walls
    29. J. C. Han, 1988, Heat transfer and friction characteristics in rec- tangular channels with rib turbulators, Journal of heat transfer, Vol. 110, pp.321-328
    30. Hsieh, S. S., Chiang, M. H., and Chen, P. J., 1997, “Velocity Measurements and Local Heat Transfer in a Rotating Ribbed Two-Pass Square Channel with Uneven Wall Heat Flux,” ASME Paper No. 97-GT-160.
    31. H. Iacovides, D. C., Ji, H. Jackson, G. Kelemenis, B. E. Launder, and K. Nikas, 1998, “LDA Study of the Flow Development Through an Orthogonally Rotating U-Bend of Strong Curvature and Rib Roughened Walls,” ASME Journal of Turbomachinery, 120, pp.386-391.
    32. T, M, Liou, C, C,Chen 1999, “LDV Study of Developing Flow Through a Smooth Duct With 180-Deg Straightat –Corner Turn” ASME Journal of Turbomachinery, 121, p167-174
    33. M. Elfert, 1993, “The Effect of Rotation and Buoyancy on Flow Development in a Rotating Circular Coolant Channel,” 2nd International Symposium on Engineering Turbrlence Modeling and Measurements, May 31 – June 2, Florence, Italy.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE