研究生: |
林冠銘 Kuan-Ming Lin |
---|---|
論文名稱: |
釩、鉻、釕之β-二酮亞胺錯合物及其衍生物的合成與化性研究 Vanadium, Chromium and Ruthenium Complexes Supported by β-Diketiminate Ligand: Syntheses, Structures and Reactivity Study |
指導教授: |
蔡易州
Yi-Chou Tsai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 140 |
中文關鍵詞: | 低配位數錯合物 、低價數錯合物 、釩 、鉻 、釕 、一氧化氮 、有機疊氮化物 |
外文關鍵詞: | low coordinate metal complex, Cr, V, Ru, imido, NO, organoazide |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用低價數、低配位數的反三明治式雙鉻金屬錯合物—(mu-eta-6:eta-6-C7H8)[Cr(Nacnac)Dipp]2 (1)與不同的有機疊氮化合物反應,可以得到大異其趣的結果;具芳香環的有機疊氮化合物與錯合物1反應,依據立體障礙的大、小可以得到雙亞胺基錯合物或是由鉻原子與四個氮原子組成的五員環錯合物;若是以Me3SiN3與錯合物1反應則可以得到三配位的鉻二價錯合物—Cr(Nacnac)Dipp[N(SiMe3)2] (6)與疊氮基架橋鍵結的[Cr(Nacnac)Dipp(mu-eta-1:eta-1-N3)]2 (7);相較之下,若以結構相似的錯合物—(mu-eta-6:eta-6-C7H8)[V(Nacnac)Dipp]2 (2)與有機疊氮化合物反應可以得到一系列四配位的雙亞胺基錯合物—V(Nacnac)Dipp(NR)2 (R = SiMe3, p-Tol, 1-Ad) (8-10)。另一方面,錯合物2與有機疊氮化合物TsN3 (Ts = 4-MeC6H4SO2)反應卻得到釩四價、五配位的V(Nacnac)Dipp(O)[eta-2-O-S(O)(p-Tol)-O] (11)。再者,吾針對雙亞胺基釩錯合物進行一系列反應性的探討發現,錯合物8與9分別對醛類進行Tischenko reaction與末端炔類進行三聚合環化反應(cyclotrimerization)有良好的催化活性。
另一方面,我們成功的合成了一系列釕二價的□-二酮亞胺金屬錯合物,其具有Ru(Nacnac)(X)(eta-6-arene) (X = H, Cl, OTf; arene = p-cyemene, p-xylene, toluene; 14-19)的分子式。利用KC8作為還原劑與錯合物Ru(Nacnac)Dipp(Cl)(eta-6-p-cymene) (14)反應可以得到新穎、低配位的半三明治式之釕一價金屬錯合物Ru(Nacnac)Dipp(eta-6-p-cymene) (20)。錯合物20在強氧化劑存在下可活化以六個碳原子配位在釕金屬上芳香環的sp3碳-氫鍵,進行脫氫去芳香性反應(dehydrogenative dearomatization),同時促使分子間碳-碳雙鍵的生成。
再者,利用錯合物20與一氧化氮反應,除了可以得到三個亞硝基配位在釕金屬上的錯合物—Ru(Nacnac)Dipp(NO)3 (25b)、亞硝基耦合而得之反式次硝酸基架橋鍵結的雙釕金屬錯合物(mu-eta-1:eta-1-O-N=N-O)[Ru(Nacnac)Dipp(NO)2]2 (25a)外,還有打斷一氧化氮之氮-氧鍵結的[Ru(Nacnac)Dipp(NH2)(NO)(mu-O)]2 (26)。然而,利用與一氧化氮相似的分子一氧化碳與錯合物20反應卻可以得到Ru2(CO)13與Ru(Nacnac)Dipp(H)(CO)2 (29)。
Ru(Nacnac)Dmp(eta-6-Ar)Cl (Ar = toluene, 15; p-cymene, 16)與RCCH (R = Ph, SiMe3)反應可生成一系列鋼琴椅型的釕金屬錯合物[Ru(RCNN)(eta-6-Ar)]Cl (CNN = [(2,6-MeC6H3)N=C(Me)]2CH[(R)C=CH], Ar = toluene, R = Ph, 30a; SiMe3, 30b; Ar = p-cymene, R = Ph, 30c)。將錯合物30a-c與NaBHEt3反應可以得到氫基加成到芳香環碳上的產物Ru(RCNN)(eta-5-4-X-C6H5Me) (X =H; R = Ph, 31a; R = SiMe3, 31b; X = i-Pr, R = Ph, 31c);另一方面,將錯合物30a與KC8反應卻對配基骨架上的甲基進行脫氫反應而變成亞甲基,生成Ru(PhCNN)*(eta-6-toluene) (PhCNN* = [(2,6-MeC6H3)N-C=CH2]CH[(2,6-MeC6H3)-N=C(Me)][(R)C=CH], 32),其仍然為釕二價的錯合物。本論文所發表之錯合物皆以多核NMR光譜與X-ray單晶繞射結構解析完整鑑定。
The reactions between (mu-eta-6:eta-6-C7H8)[Cr(Nacnac)Dipp]2 (1) and organic azides were investigated and generated a variety of novel complexes. Treatment of p-TolN3 (p-Tol = 4-MeC6H4) with 1 produced not only a bisimido chromium complex, Cr(Nacnac)Dipp(N-p-Tol)2 (4), but a five-membered-ring compound Cr(Nacnac)Dipp[eta-2-(p-Tol)N-N=N-N
-(p-Tol)] (5). However, the reaction of 1 with Me3SiN3 resulted in the formation of a three-coordinate amido complex Cr(Nacnac)Dipp(N(SiMe3)2) (6) and an azido bridged complex [Cr(Nacnac)Dipp(mu-eta-1:eta-1-N3)]2 (7). In contrast, treatment of organic azides with its vanadium analog, namely (mu-eta-6:eta-6-C7H8)[V(Nacnac)Dipp]2 (2), afforded a family of four-coordinate bisimido complexes, V(Nacnac)Dipp(NR)2 (R = SiMe3, 8; p-Tol, 9; 1-Ad, 10). While the reaction of 2 with TsN3 (Ts = p-TolSO2) furnished a tetravalent penta-coordinate complex, V(Nacnac)Dipp(O)[eta-2-O-S(O)(p-Tol)-O] (11). These four-coordinate bisimido complexes 8 and 9 are found to be effective catalysts towards the dimerization of aldehydes to form their corresponding carboxylic esters, namely the Tischenko reaction, and the cyclotrimerization of terminal alkynes respectively.
Moreover, a series of Ru(II) complexes supported by beta-diketiminate ligand with general formula of Ru(Nacnac)(X)(□6-Ar) (X = H, Cl, OTf; Ar = p-cyemene, p-xylene, toluene; 14-19) were successfully synthesized and fully characterized. Reduction of Ru(Nacnac)Dipp(Cl)(eta-6-p-cymene) (14) with KC8 furnished a novel, low coordinate, half sandwich and monovalent ruthenium complex, Ru(Nacnac)Dipp(eta-6-p-cymene) (20). The univalent Ru(I) complex 20 can promote the C-H bond activation of the coordinated p-cymene ligand and an intermolecular C=C double bond formation through oxidative dehydrogenative coupling of sp3 C-H bond in the presence of strong oxidase.
Moreover, the reaction between 20 and NO afforded trinitrosyl complex, Ru(Nacnac)Dipp(NO)3 (25b), a dinuclear ruthenium complex, (mu-eta-1:eta-1-O-N=N-O)[Ru(Nacnac)Dipp(NO)2]2 (25a) with trans-hyponitrite bridged resulted from N-N coupling of two NO ligand, and, of particular interest, an oxo-bridged, amido diruthenium complex, [Ru(Nacnac)Dipp(NH2)(NO)(mu-O)]2 (26), resulted from cleavage of NO. On the other hand, the reaction of 20 with CO, led to the formation of Ru3(CO)12 and Ru(Nacnac)Dipp(H)(CO)2 (29) surprisingly.
A series of three-legged piano-stool complexes with formula of [Ru(RCNN)(eta-6-Ar)]Cl (CNN = [(2,6-MeC6H3)N=C(Me)]2CH[(R)C=CH], Ar = toluene, R = Ph, 30a; SiMe3, 30b; Ar = p-cymene, R = Ph, 30c) were successfully synthesized through reaction of Ru(Nacnac)Dmp(eta-6-Ar)Cl (Ar = toluene, 15; p-cymene, 16) with RCCH (R = Ph, SiMe3). Treatment of 30a-c with NaHBEt3 resulted in the nucleophilic addition of the hydride to aromatic CH of coordinated arene and formation of Ru(RCNN)(eta-5-4-X-C6H5Me) (X =H; R = Ph, 31a; R = SiMe3, 31b; X = i-Pr, R = Ph, 31c). Reduction of 30a with KC8, however, gave rise to the dehydrogenation of the Me into CH2 of ligand backbone and afforded the divalent ruthenium complex, Ru(PhCNN)*(eta-6-toluene) (PhCNN* = [(2,6-MeC6H3)N-C=CH2]CH[(2,6-MeC6H3)N=C(Me)]
[(R)C=CH], 32). All new complexes presented were structurally characterized by mult-nuclear NMR spectroscopy and X-ray diffraction.
(1) Cummins, C. C. Prog. Inorg. Chem. 1998, 47, 685-836.
(2) Alvarez, S. Coord. Chem. Rev. 1999, 193-195, 13-41.
(3) Kirn, J.; Rees, D. C. Nature 1992, 360, 553-560.
(4) Laplaza, C. E.; Cummins, C. C. Science 1995, 268, 861-863.
(5) Bourget-Merle, L.; Lappert, M. F.; Severn, J. R. Chem. Rev. 2002, 102, 3031-3065.
(6) Smaglik, P. Nature 2000, 406, 807-808.
(7) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507-514.
(8) Berkowitz, J.; Ellison, G. B.; Gutman, D. J. Phys. Chem. 1994, 98, 2744.
(9) Green, M. L. H.; Knowles, P. J. J. Chem. Soc. Chem. Commun. 1970, 1677.
(10) Bennett, M. A.; Milner, D. L. J. Chem. Soc. Chem. Commun. 1967, 581-582.
(11) Hoyano, J. K.; Graham, W. A. G. J. Am. Chem. Soc. 1982, 104, 3723-3725.
(12) Shilov, A. E. S. p., G. B. Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes.; Kluwer Academic, Dordrecht, 2000.
(13) Hall, C.; Perutz, R. Chem. Rev. 1996, 96, 3125-3146.
(14) Palmer, R. M. J.; Ferrige, A. G.; Moncada, S. Nature 1987, 327, 524.
(15) Koshland, D. E. Science 1992, 258, 1861.
(16) Stamler, J. S.; Singel, D. J.; Loscalzo, J. Science 1992, 258, 1898.
(17) McCleverty, J. A. Chem. Rev. 2004, 104, 403-418.
(18) Averill, B. A. Chem. Rev. 1996, 96, 2951-2964.
(19) Wasser, I. M.; Vries, S. d.; Moenne-Loccoz, P.; Schroder, I.; Karlin, K. D. Chem. Rev. 2002, 102, 1201-1234.
(20) Hayton, T. W.; Legzdins, P.; Sharp, W. B. Chem. Rev. 2002, 102, 935-991.
(21) Mindiola, D. J. Acc. Chem. Res. 2006, 39, 813-821.
(22) Schrock, R. R. J. Chem. Soc., Dalton Trans. 2001, 2541-2550.
(23) Schrock, R. R. Chem. Rev. 2002, 102, 145-179.
(24) http://nobelprize.org/chemistry/laureates/2005/index.html.
(25) Gallo, S. C. E.; Caselli, A.; Ragaini, F.; Fantauzzi, S.; Piangiolino, C. Coord. Chem. Rev. 2006, 250, 1234-1253.
(26) Tsai, Y.-C.; Wang, P.-Y.; Chen, S.-A.; Chen, J.-M. J. Am. Chem. Soc. 2007, 129, 8066-8067.
(27) Tsai, Y.-C.; Wang, P.-Y.; Lin, K.-M.; Chen, S.-A.; Chen, J.-M. Chem. Commun. 2008, 205-207.
(28) Schubert, E. M. J. Chem. Educ. 1992, 69, 62.
(29) Baker, M. V.; Field, L. D.; Hambley, T. W. Inorg. Chem. 1988, 27, 7.
(30) Evans, D. F. J. Chem. Soc. 1959, 2003.
(31) Zhu, H.; Yang, Z.; Magull, J. r.; Roesky, H. W.; Schmidt, H.-G.; Noltemeyer, M. Organometallics 2005, 24, 6420-6425.
(32) Clough, C. R.; Greco, J. B.; Figueroa, J. S.; Diaconescu, P. L.; Davis, W. M.; Cummins, C. C. J. Am. Chem. Soc. 2004, 126, 7742-7743.
(33) Curley, J. J.; Sceats, E. L.; Cummins, C. C. J. Am. Chem. Soc. 2006, 128, 14036-14037.
(34) Floriani, C.; Cerosa, A. Z.; Solari, E.; Giannini, L.; Villa, A. C.; Rizzoli, C. J. Am. Chem. Soc. 1998, 120, 437-438.
(35) Floriani, C.; Casellli, A.; Solari, E.; Scopelliti, R. J. Am. Chem. Soc. 1999, 121, 8296-8305.
(36) Crimmin, M. R.; Barrett, A. G. M.; Hill, M. S.; Procopiou, P. A. Org. Lett. 2007, 9, 331-333.
(37) Vujkovic, N.; Ward, B. D.; Maisse-Francois, A.; Wadepohl, H.; Mountford, P.; Gade, L. H. Organometallics 2007, 26, 5522-5534.
(38) Kakeya, M.; Fujihara, T.; Kasaya, T.; Nagasawa, A. Organometallics 2006, 25, 4131-4137.
(39) Ozerov, O. V.; Patrick, B. O.; Ladipo, F. T. J. Am. Chem. Soc. 2000, 122, 6423-6431.
(40) Paneque, M.; Posadas, C. M.; Poveda, M. L.; Rendon, N.; Santos, L. L.; Alvarez, E.; Salazar, V.; Mereiter, K.; Onate, E. Organometallics 2007, 26.
(41) Hill, J. E.; Balaich, G.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1993, 12, 2911-2924.
(42) Rostovtsev, V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 2596-2599.
(43) Kolb, H. C.; Sharpless, K. B. Drug Discovery Today 2003, 8, 1128-1137.
(44) Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radić, Z.; Carlier, P. R.; Taylor, P. F.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 1053-1057.
(45) Speers, A. E.; Adam, G. C.; Cravatt, B. F. J. Am. Chem. Soc. 2003, 125, 4686-4687.
(46) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004-2021.
(47) Wang, P.-Y., National Tsing Hua University, 2007.
(48) Gibson, V. C.; Newton, C.; Redshaw, C.; Solan, G. A.; White, A. J. P.; Williams, D. J. Eur. J. Inorg. Chem. 2001, 1895-1903.
(49) Dai, X.; Kapoor, P.; Warren, T. H. J. Am. Chem. Soc. 2004, 126, 4798-4799.
(50) Smith, J. M.; Lachicotte, R. J.; Pittard, K. A.; Cundari, T. R.; Lukat-Rodgers, G.; Rodgers, K. R.; Holland, P. L. J. Am. Chem. Soc. 2001, 123, 9222-9223.
(51) Phillips, A. D.; Laurenczy, G. b.; Scopelliti, R.; Dyson, P. J. Organometallics 2007, 26, 1120-1122.
(52) Bell, L. K.; Mason, J.; Mingos, D. M. P.; Tew, D. G. Inorg. Chem. 1983, 22, 3497-3502.
(53) Arulsamy, N.; Bohle, D. S.; Imonigie, J. A.; Moore, R. C. Polyhedron 2007, 26, 4737-4745.
(54) Bhaduri, S.; Johnson, B. F. G.; Pickard, A.; Raithby, P. R.; Sheldrick, G. M.; Zuccaro, C. I. J. Chem. Soc. Chem. Commun. 1977, 354.
(55) Arikawa, Y.; Asayama, T.; Moriguchi, Y.; Agari, S.; Onishi, M. J. Am. Chem. Soc. 2007, 129, 14160-14161.
(56) Man, W.-L.; Tang, T.-M.; Wong, T.-W.; Lau, T.-C.; Peng, S.-M.; Wong, W.-T. J. Am. Chem. Soc. 2004, 126, 478-479.
(57) Veige, A. S.; Slaughter, L. M.; Lobkovsky, E. B.; Wolczanski, P. T.; Matsunaga, N.; Decker, S. A.; Cundari, T. R. Inorg. Chem. 2003, 42, 6204-6224.
(58) Hoffmann, R.; Chen, M. M. L.; Elian, M.; Rossi, A. R.; Mingos, D. M. P. Inorg. Chem. 1974, 13, 2666-2675.
(59) Enemark, J. H.; Feltham, R. D. Coord. Chem. Rev. 1974, 13, 339.
(60) Manzer, L. E. Inorg. Synth. 1982, 21, 135-140.
(61) Brimble, M. A.; Furkert, D. P. Org. Biomol. Chem. 2004, 2, 3573-3583.
(62) Hodson, E.; Simpson, S. J. Polyhedron 2004, 23, 2695-2707.
(63) Bennett, M. A.; Smith, A. K. J. Chem. Soc., Dalton Trans.: Inorg. Chem. 1974, 2, 233-241.
(64) Stender, M.; Wright, R. J.; Eichler, B. E.; Prust, J.; Olmstead, M. M.; Roesky, H. W.; Power, P. P. J. Chem. Soc., Dalton Trans. 2001, 3465-3469.
(65) Cheng, M.; Moore, D. R.; Reczek, J. J.; Chamberlain, B. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8738-8749.
(66) Podall, H.; Foster, W. E.; Giraitis, A. P. J. Org. Chem. 1958, 23, 82-85.
(67) Bjorsvik, H.-R.; Gambarotti, C.; Jensen, V. R.; Gonzale, R. R. J. Org. Chem. 2005, 70, 3218-3224.