簡易檢索 / 詳目顯示

研究生: 朱劭正
Chu, Shao-Cheng
論文名稱: 1-4GHz鎖定延遲迴路為基底之 高速時脈訊號產生器
1-4GHz DLL-Based High Speed Clock Generator
指導教授: 黃錫瑜
Huang, Shi-Yu
口試委員: 黃錫瑜
Shi-Yu Huang
洪浩喬
Hao-Chiao Hong
呂學坤
Shyue-Kung Lu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 52
中文關鍵詞: 延遲鎖定迴路延遲鎖定迴路為基底鎖相迴路倍頻器時脈產生器可調延遲元件雷達系統晶片多相位
外文關鍵詞: delay-locked loop, DLL-based, phase-locked loop, frequency multiplier, clock generator, tunable delay line, radar SoC, multi-phase
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這份研究裡,為了支援室內雷達系統晶片的高頻時脈 1-4GHz 的範圍,我們以全數位鎖定延遲迴路倍頻器的電路系統,藉此來擴展可達成的最高操作頻率。依據 [12] 和 [13],為了產生多個精準的相位,我們使用了一個創新的架構:我們利用週期訊號會持續重複的特性,對相位作精準的校正,使其能對對抗製程變異所帶來的誤差,並且在得到 8 個 1GHz 的相位之後,將這 8 個相位組先經過脈衝寬度的處裡,再藉由邏輯運算組合波型使其加速,最後將其責任區間修復回50%,成為最後我們想要的目標時脈。
    根據電路布局圖的模擬結果顯示,我們所產生出的時脈與目標 4GHz 的頻率誤差僅不到 0.01% 、以及 7.48ps 的均方根抖動,面積與功耗分別為為0.104mm2和12.67mW。
    整個實驗中有兩個特別困難的地方。第一個是在產生多相位的階段中,為了產生最少125ps的相位差,我們必須設計出一個能被精確地控制的可調延遲元件,然而125ps的延遲時間,對以90nm製程所設計的電路來說尚且太難,因此我們利用了週期訊號會持續重複的特性,藉由設計出1125ps的延遲來取得125ps的相位差,並達成目標。第二個困難之處,則是如何創造出其他可選擇的不同相位。以傳統的方法來說,將鎖定延遲迴路的輸出端和輸入端作相位上的比較,然後將其得到的延遲時間作平均的分配、需要幾個相位就分成幾等份,以此來得到不同的相位。然而這個方法卻不適用於我們的電路,因為會造成可調延遲元件所需覆蓋的延遲範圍上的負擔,因此我們採用了另一種新的相位分配方法,如此一來可調延遲元件便能完全覆蓋我們所需的延遲範圍。


    In this work we try to extend the maximum operating frequency achievable by all-digital delay-locked loop (DLL) based frequency multiplication circuit to support a high-speed range of 1GHz to 4GHz, to be used by our in-house radar system on chip (SoC). This goal is achieved by an innovative architecture in which an 8 phases of 1GHz clock signals pre-generated using techniques proposed in [12] and [13] are combined to form the waveform of the final target clock signal.
    Post-layout simulation result shows that the frequency error of the generated 4GHz clock signal is below 0.01% with a 7.48ps RMS-jitter, and the active area and the power consumption is 0.104mm2 and 12.67mW respectively.

    Abstract i 摘要 ii 誌謝 iii Content iv List of Figures vi List of Table viii Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Thesis Organization 8 Chapter 2 Preliminaries 9 2.1 A Conventional Frequency Multiplication Method 9 2.2 Frequency Multiplication Method We’ve Tried 11 Chapter 3 Proposed Frequency Multiplication Method 18 3.1 Method of Frequency Multiplication 18 3.2 Method of Frequency Tuning 20 Chapter 4 Architecture 22 4.1 Proposed Architecture 22 4.2 Operation Flow 23 Chapter 5 Detail Circuits 24 5.1 All-Digital Phase-Locked Loop (ADPLL) 24 5.2 Multi-Phase Clock Generator (MPCG) 24 5.2.1 Basic Cyclic MPCG Architecture 25 5.2.2 Process Calibration 26 5.2.3 Comparison of Frequency Multiplication Methods 28 5.2.4 Dynamic Tracking 30 5.2.5 Tunable Delay Element (TDE) 30 5.2.6 Phase Detector (PD) 32 5.3 8-Phase One-Shot Circuit 35 5.4 4-to-1 OR-Gate Tree 36 5.5 Edge Combiner 37 Chapter 6 Experimental Results 42 6.1 Output Pad Issue 42 6.2 Circuits Integration 43 6.3 Performance Table 45 6.4 Post Experiment Analysis 48 Chapter 7 Conclusion 49 Bibliography 50

    [1] Deok-Soo Kim, Heesoo Song, Taeho Kim, Suhwan Kim, Deog-Kyoon Jeong, “A 0.3–1.4 GHz All-Digital Fractional-N PLL With Adaptive Loop Gain Controller,” IEEE Journal of Solid-State Circuits, vol. 45, no.11, pp. 2300-2311, Nov. 2010.
    [2] Tokairin T., Okada M., Kitsunezuka M., Tadashi Maeda, Fukaishi M., “A 2.1-to-2.8-GHz Low-Phase-Noise All-Digital Frequency Synthesizer With a Time-Windowed Time-to-Digital Converter,” IEEE Journal of Solid-State Circuits, vol. 45, no.12, pp. 2582-2590, Dec. 2010.
    [3] Jin-Han Kim, Young-Ho Kwak, Mooyoung Kim, Soo-Won Kim, Chulwoo Kim, “A 120-MHz-1.8GHz CMOS DLL-Based Clock Generator for Dynamic Frequency Scaling,” IEEE Journal of Solid-State Circuits, Volume:41, Issue:9, pp.2077-2082, Sept. 2006.
    [4] T. C. Lee and K. J. Hsiao, “The design and analysis of a DLL-based frequency synthesizer for UWB application,” IEEE Journal of Solid-State Circuits, vol. 41, no.6 pp. 1245-1252, Jun. 2006.
    [5] K. Chung, J. Koo S. W. Kim, and C. Kim, “An anti-harmonic programmable DLL-baed frequency multiplier for dynamic frequency scaling,” IEEE Asian Solid-State Circuits Conference, pp. 276-279, Now. 2007.
    [6] H.-H. Chang, C.-H. Hung, K.-H. Cheng, “A 3 GHz DLL-Based Clock Generator with Stuck Locking Protection,” IEEE international conference on Electronics, Circuits, and Systems (ICECS), pp. 106-109, Dec. 2010.
    [7] Mesgarzadeh B., Alvandpour A., “A Low-Power Digital DLL-Based Clock Generator in Open-Loop Mode,” IEEE journal of Solid-State Circuits, vol. 44, no. 7, pp. 1907-1919, July 2009.
    [8] Chen-Hsiang Hsu, Shi-Yu Huang, Ding-Ming Kwai, Yung-Fa Chou, “Worst-case IR-drop monitoring with 1GHz sampling rate,” 2013 international Symposium on VLSI Design, Automation, and Test (VLSI-DAT), pp. 1-4, April 2013.
    [9] Pei-Ying Chao, Chao-Wen Tzeng, Shan-Chien Fang, Chia-Chien Weng, Shi-Yu Huang, “Low-jitter code-jumping for all-digital PLL to support almost continuous frequency tracking,” 2011 International Symposium on VLSI Design, Automation and Test(VLSI-DAT), pp. 1-4, April 2011.
    [10] Pei-Ying Chao, Chao-Wen Tzeng, Shi-Yu Huang, Chia-Chieh Weng, Shan-Chien Fang, “Process-Resilient Low-Jitter All-Digital PLL via Smooth code-Jumping,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 12, pp. 2240-2249, Oct. 2013.
    [11] Chao-Wen Tzeng, Shi-Yu Huang, Pei-Ying Chao, “Parameterized All-Digital PLL Architecture and its Compiler to Support Easy Process Migration,” IEEE transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 3, pp. 621-630, Feb. 2014.
    [12] Ruo-Ting Ding, Shi-Yu Huang, Chao-Wen Tzeng, “Cell-Based Process Resilient Multiphase Clock Generation,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 12, pp. 2348-2352, Oct. 2013.
    [13] R.-T. Ding, S.-Y. Huang, C.-W. Tzeng, S.-C. Fang, and C.-C. Weng, “Cyclic-MPCG: Process-resilient and super-resolution multi-phase clock generation by exploiting the cyclic property,” Proc. of Int’l Symp. on VLSI Design, Automation and Test(VLSI-DAT), pp. 1-4, April 2012.
    [14] Rong-Jui Yang, Shen-luan Lio, “A 40-550 MHz Harmonic-Free All-Digital Delay-Locked Loop Using a Variable SAR Algorithm,” IEEE Journal of Solid-State Circuits, Volume: 42, Issu2:2, pp.361-373, Feb. 2007.
    [15] J.-W. Ke, S.-Y. Huang, C.-W. Tzeng, D.-M. Kwai, Y.-F. Chou, “Die-to-Die Clock Synchronization for 3-D IC Using Dual Locking Mechanism,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no.4, pp. 908-917, April 2013.
    [16] Pao-Lung chen, Ching-Che Chung, chen-Yi Lee, “A portable digitally controlled oscillator using novel varactors,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, no. 5, pp. 233-237, May 2005.
    [17] H.-J. Hsu and S.-Y. Huang, “A low-jitter ADPLL via a suppressive digital filter and an interpolation-based locking scheme,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 11, pp. 165–170, Nov. 2009.
    [18] Hsuan-Jung Hsu, Chun-Chieh Tu, Shi-Yu Huang, “A high-resolution all-digital phase-locked loop with its application to built-in speed grading for memory,” IEEE International Symposium on VLSI Design, Automation and Test, 2008, pp. 267-270, April 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE