研究生: |
朱劭正 Chu, Shao-Cheng |
---|---|
論文名稱: |
1-4GHz鎖定延遲迴路為基底之 高速時脈訊號產生器 1-4GHz DLL-Based High Speed Clock Generator |
指導教授: |
黃錫瑜
Huang, Shi-Yu |
口試委員: |
黃錫瑜
Shi-Yu Huang 洪浩喬 Hao-Chiao Hong 呂學坤 Shyue-Kung Lu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 52 |
中文關鍵詞: | 延遲鎖定迴路 、延遲鎖定迴路為基底 、鎖相迴路 、倍頻器 、時脈產生器 、可調延遲元件 、雷達系統晶片 、多相位 |
外文關鍵詞: | delay-locked loop, DLL-based, phase-locked loop, frequency multiplier, clock generator, tunable delay line, radar SoC, multi-phase |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這份研究裡,為了支援室內雷達系統晶片的高頻時脈 1-4GHz 的範圍,我們以全數位鎖定延遲迴路倍頻器的電路系統,藉此來擴展可達成的最高操作頻率。依據 [12] 和 [13],為了產生多個精準的相位,我們使用了一個創新的架構:我們利用週期訊號會持續重複的特性,對相位作精準的校正,使其能對對抗製程變異所帶來的誤差,並且在得到 8 個 1GHz 的相位之後,將這 8 個相位組先經過脈衝寬度的處裡,再藉由邏輯運算組合波型使其加速,最後將其責任區間修復回50%,成為最後我們想要的目標時脈。
根據電路布局圖的模擬結果顯示,我們所產生出的時脈與目標 4GHz 的頻率誤差僅不到 0.01% 、以及 7.48ps 的均方根抖動,面積與功耗分別為為0.104mm2和12.67mW。
整個實驗中有兩個特別困難的地方。第一個是在產生多相位的階段中,為了產生最少125ps的相位差,我們必須設計出一個能被精確地控制的可調延遲元件,然而125ps的延遲時間,對以90nm製程所設計的電路來說尚且太難,因此我們利用了週期訊號會持續重複的特性,藉由設計出1125ps的延遲來取得125ps的相位差,並達成目標。第二個困難之處,則是如何創造出其他可選擇的不同相位。以傳統的方法來說,將鎖定延遲迴路的輸出端和輸入端作相位上的比較,然後將其得到的延遲時間作平均的分配、需要幾個相位就分成幾等份,以此來得到不同的相位。然而這個方法卻不適用於我們的電路,因為會造成可調延遲元件所需覆蓋的延遲範圍上的負擔,因此我們採用了另一種新的相位分配方法,如此一來可調延遲元件便能完全覆蓋我們所需的延遲範圍。
In this work we try to extend the maximum operating frequency achievable by all-digital delay-locked loop (DLL) based frequency multiplication circuit to support a high-speed range of 1GHz to 4GHz, to be used by our in-house radar system on chip (SoC). This goal is achieved by an innovative architecture in which an 8 phases of 1GHz clock signals pre-generated using techniques proposed in [12] and [13] are combined to form the waveform of the final target clock signal.
Post-layout simulation result shows that the frequency error of the generated 4GHz clock signal is below 0.01% with a 7.48ps RMS-jitter, and the active area and the power consumption is 0.104mm2 and 12.67mW respectively.
[1] Deok-Soo Kim, Heesoo Song, Taeho Kim, Suhwan Kim, Deog-Kyoon Jeong, “A 0.3–1.4 GHz All-Digital Fractional-N PLL With Adaptive Loop Gain Controller,” IEEE Journal of Solid-State Circuits, vol. 45, no.11, pp. 2300-2311, Nov. 2010.
[2] Tokairin T., Okada M., Kitsunezuka M., Tadashi Maeda, Fukaishi M., “A 2.1-to-2.8-GHz Low-Phase-Noise All-Digital Frequency Synthesizer With a Time-Windowed Time-to-Digital Converter,” IEEE Journal of Solid-State Circuits, vol. 45, no.12, pp. 2582-2590, Dec. 2010.
[3] Jin-Han Kim, Young-Ho Kwak, Mooyoung Kim, Soo-Won Kim, Chulwoo Kim, “A 120-MHz-1.8GHz CMOS DLL-Based Clock Generator for Dynamic Frequency Scaling,” IEEE Journal of Solid-State Circuits, Volume:41, Issue:9, pp.2077-2082, Sept. 2006.
[4] T. C. Lee and K. J. Hsiao, “The design and analysis of a DLL-based frequency synthesizer for UWB application,” IEEE Journal of Solid-State Circuits, vol. 41, no.6 pp. 1245-1252, Jun. 2006.
[5] K. Chung, J. Koo S. W. Kim, and C. Kim, “An anti-harmonic programmable DLL-baed frequency multiplier for dynamic frequency scaling,” IEEE Asian Solid-State Circuits Conference, pp. 276-279, Now. 2007.
[6] H.-H. Chang, C.-H. Hung, K.-H. Cheng, “A 3 GHz DLL-Based Clock Generator with Stuck Locking Protection,” IEEE international conference on Electronics, Circuits, and Systems (ICECS), pp. 106-109, Dec. 2010.
[7] Mesgarzadeh B., Alvandpour A., “A Low-Power Digital DLL-Based Clock Generator in Open-Loop Mode,” IEEE journal of Solid-State Circuits, vol. 44, no. 7, pp. 1907-1919, July 2009.
[8] Chen-Hsiang Hsu, Shi-Yu Huang, Ding-Ming Kwai, Yung-Fa Chou, “Worst-case IR-drop monitoring with 1GHz sampling rate,” 2013 international Symposium on VLSI Design, Automation, and Test (VLSI-DAT), pp. 1-4, April 2013.
[9] Pei-Ying Chao, Chao-Wen Tzeng, Shan-Chien Fang, Chia-Chien Weng, Shi-Yu Huang, “Low-jitter code-jumping for all-digital PLL to support almost continuous frequency tracking,” 2011 International Symposium on VLSI Design, Automation and Test(VLSI-DAT), pp. 1-4, April 2011.
[10] Pei-Ying Chao, Chao-Wen Tzeng, Shi-Yu Huang, Chia-Chieh Weng, Shan-Chien Fang, “Process-Resilient Low-Jitter All-Digital PLL via Smooth code-Jumping,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 12, pp. 2240-2249, Oct. 2013.
[11] Chao-Wen Tzeng, Shi-Yu Huang, Pei-Ying Chao, “Parameterized All-Digital PLL Architecture and its Compiler to Support Easy Process Migration,” IEEE transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 3, pp. 621-630, Feb. 2014.
[12] Ruo-Ting Ding, Shi-Yu Huang, Chao-Wen Tzeng, “Cell-Based Process Resilient Multiphase Clock Generation,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 12, pp. 2348-2352, Oct. 2013.
[13] R.-T. Ding, S.-Y. Huang, C.-W. Tzeng, S.-C. Fang, and C.-C. Weng, “Cyclic-MPCG: Process-resilient and super-resolution multi-phase clock generation by exploiting the cyclic property,” Proc. of Int’l Symp. on VLSI Design, Automation and Test(VLSI-DAT), pp. 1-4, April 2012.
[14] Rong-Jui Yang, Shen-luan Lio, “A 40-550 MHz Harmonic-Free All-Digital Delay-Locked Loop Using a Variable SAR Algorithm,” IEEE Journal of Solid-State Circuits, Volume: 42, Issu2:2, pp.361-373, Feb. 2007.
[15] J.-W. Ke, S.-Y. Huang, C.-W. Tzeng, D.-M. Kwai, Y.-F. Chou, “Die-to-Die Clock Synchronization for 3-D IC Using Dual Locking Mechanism,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no.4, pp. 908-917, April 2013.
[16] Pao-Lung chen, Ching-Che Chung, chen-Yi Lee, “A portable digitally controlled oscillator using novel varactors,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, no. 5, pp. 233-237, May 2005.
[17] H.-J. Hsu and S.-Y. Huang, “A low-jitter ADPLL via a suppressive digital filter and an interpolation-based locking scheme,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 11, pp. 165–170, Nov. 2009.
[18] Hsuan-Jung Hsu, Chun-Chieh Tu, Shi-Yu Huang, “A high-resolution all-digital phase-locked loop with its application to built-in speed grading for memory,” IEEE International Symposium on VLSI Design, Automation and Test, 2008, pp. 267-270, April 2008.