研究生: |
許碧珊 Pi-Shan Hsu |
---|---|
論文名稱: |
國小教師在數學課堂中學習任務的教學實踐-以「柱體」與「錐體」單元為例 Classroom Practices of Mathematics Learning Tasks in Cylinders and Pyramid Used by Primary School Teachers |
指導教授: |
林碧珍
Pi-Jean Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所 Graduate Institute of Mathematics and Science Education |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 442 |
中文關鍵詞: | 學習任務 、教學實踐 、柱體與錐體 |
外文關鍵詞: | Mathematics Learning Tasks, Classroom Practices, Cylinders and Pyramid |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對國小教師在數學課堂中學習任務的教學實踐進行探究。本研究以「教室錄影」及「課後晤談錄影」的方式進行「資深教師」及「一般教師」不同的兩位個案教師在「柱體與錐體」的教學單元蒐集資料,資料分析來源是24片錄影光碟轉譯和編輯成的24份原案。本研究以「個案教師使用學習任務幫助學生學習之實踐類型」、「個案教師使用學習任務幫助學生學習之實踐類型異同處」以及「個案教師在教學時常見之學習任務實踐類型」三面向分析後發現:
(一)資深教師在教學中常見之學習任務實踐類型有18種,其中更常使用的實踐類型有以下8種:1.為了瞭解學生的學習狀況,教師會布類題;2.為了讓學生掌握課程重點,教師會在課程結束前做總結;3.為了讓學生思考,教師會追問學生理由、會口頭問答、會讓學生比較不同的解題策略、會鼓勵學生發表;4.為了釐清學生的概念,教師會使用教具輔助說明;5.為了讓學生的概念更清楚,教師會口頭問答、會請學生先觀察;6.為了讓學生反思,教師會問學生為什麼;7.為了擴展基模的使用範圍,教師會布類題;8.為了教學生新概念,教師會請學生呈現原始想法。
(二)一般教師在教學中常見之學習任務實踐類型有14種,其中更常被使用的實踐類型有以下2種: 1.為了釐清學生的概念,教師會使用教具輔助說明;2.為了讓學生的概念更清楚,教師會口頭問答。
(三)將資深教師常見之18種學習任務實踐類型和一般教師常見之14種學習任務實踐類型,做比較分析後發現他們共同皆會使用的類型有下列4種實踐類型:1.為了讓學生思考,教師會口頭問答;2.為了釐清學生的概念,教師會使用教具輔助說明;3.為了讓學生的概念更清楚,教師會口頭問答;4.為了讓學生反思,教師會問學生為什麼。
In this study, it is to explore the learning task of teaching practice of elementary school teachers in the mathematics classroom. The researchers conducted in classroom video and after school interviewed by using two different cases of “seniors teachers” or general teacher to collect data in cylinder and cone teaching unit information. The sources of data analysis used 24 copies that CD translated and compile 24 slices. Morever, in this study, case teachers use to learn the practice mission to help student to learn in three ways : types, similarities, and different places of the studies task while teaching. There were three analysis after findings as followings:
(1)There were 18 kinds of teaching types which are often used by senior teachers while they were teaching, The practice type which most common used were 8 kinds of following below: 1.In order to understand students’ learning abilities, teacher will make the examples first, Which are just like the main questions they are going to learn; 2.In order to make sure if all the students understood what the courses focusing on, teacher will doing the summarize before the end of the course; 3.In order to make students think more, teacher will asked students to talk about their reasons, and ask some oral questions. in addition to this,teacher will let students to compare different kinds of solving policies,and encourages students to have a perform;4.In order to clarify the thinking of students, teacher will used teaching tools to help them explain;5. For making students to think more clearly,teacher will have oral questions, and let students to observe first;6.In order to let students to make sure theirs answers, teacher will usually ask them “why”;7. In order to expand the scope of used of archetypes, teacher will do the example problem first. 8.In order to teach students new concepts, teacher will let students to keep their original ideas.
(2) There were 14 kinds of teaching types are often used by general teacher while they are teaching. There are 2 kinds of it which are more often to use : 1. In order to clarify the thinking of students, teacher will used teaching tools to help them explain;2. For making students to think more clearly,teacher will have oral questions.
(3) After doing comparative analysis revealed ,the senior teacher common 18 kinds of practice learning tasks and general teacher common practice of 14 kinds of learning tasks types, common used types have the following 4 kinds of practice: 1. In order to let students thinking, teacher will oral question and answer;2. In order to clarify the thinking of students, teacher will used teaching tools to help them explain;3. For making students to think more clearly,teacher will have oral questions.;4. In order to let students to make sure theirs answers, teacher will usually ask them“why”.
中文部分
王欣(2007)。任務驅動學習及其在小學數學教學中的運用。上海師範大學教育學院碩士論文,未出版,上海市。
何仕仁、黃台珠(2005)。不同教學、知識創造管理模式對國中生數學學習成效之影響研究。科學教育學刊,13(2),217-239。
李源順和林福來(1998)。校內數學教師專業發展的互動模式。師大學報,科學教育類,43(2),1-23。
李源順和林福來(2000a)。數學診斷教學能力的培育。師大學報,科學教育類,45(1),1-25。
李源順、林福來(2000b)。數學教師的專業成長:教學多元化。師大學報:科學教育類,45(1),1-25
李源順和林福來(2003):實習教師的學習:動機、身份與反思互動下的成長。科學教育學刊,11(1),1-25。
李源順 (2004)。數學專家教師的專業發展可複製性分析。 科學教育研究與發展季刊,95-118。
吳福源 (2000)。國民小學優良教師與一般教師之班級氣氛比較研究。花蓮師院學報,10,171-196。
房昔梅、鍾靜 (2005)。 國小教師在高年級實施討論式數學教學之行動研究。國立臺北教育大學學報,18(2),33-64。
林文生(2000)。如何以行動研究來改變教師的課程地圖。教育資料與研究,35,25-27。
林生傳(1998)。建構主義的教學評析。課程與教學季刊,1(3),1-14。
林建平(1997)。學習輔導-理論與實務。台北:五南。
林碧珍(1999) 。一個以學童數學認知為基礎的小學教師數學專業發展模式。發表於八十八學年度師範學院教育學術論文發表會。
林碧珍(2001)。培養學生形成數學問題的能力。國教世紀,198,5-14。
林碧珍 (2007) 。教師建構值分數教學知識的歷程。教育與心理研究期刊,30(2),89-124。(TSSCI)。
林碧珍和蔡文煥 (1999)。以學校為中心的小學教師數學專業發展模式。論文發表於1999數學教師教育國際學術研討會。國立台灣師範大學數學系。
林夏水(2002)。數學本質•認識論•數學觀—簡評“對數學本質的認識”。 數學教育學報, 3,26-29。
林碧珍(2003)。生活情境中的數學。教育研究集刊,3,1-26。
尚榮安(譯)(2001)。R. K. Yin著。個案研究法(Case study research)。台北市︰弘智文化。
姚如芬(2006)。成長團體之「成長」-小學教師數學教學專業之探究。科學教育學刊,14(3),309-331。
康軒文教事業(2010)。康軒第十一冊數學科教學指引。台北:康軒文教事業出版。
康軒文教事業股份有限公司(2010)。國民小學數學課本、習作、第十一冊。台北:康軒書局教科書股份有限公司。
張世忠(2000)。教學原理:統整與應用。臺北:五南圖書出版公司。
張宇樑、洪巽盈(2009)。運用概念構圖教學策略提升六年級數學低成就學生學習效益之個案研究。台灣數學教師電子期刊,18,50-65。
張景媛(1997):如何讓新手教師成為專家教師。教育測驗與輔導,145,3008-3010。
張淑怡(2004a)。共識域之本質與功能~以數學教室為例。國教學報,16,1-27。
張淑怡(2004b)。從 Maturana 的認知生物學看數學學習與數學教學之本質。朝陽人文社會學學刊,2(1),109-148 。
張淑怡(2008)。數學教室內之班級互動類型研究:一個國小四年級的班級個案。教育與心理研究,31(4),23-52。
張新仁(2006)。學習策略的知識管理。教育研究與發展期刊,2(2),19-42。
張靜嚳(1995a):何謂建構主義。建構與教學,第三期。
張靜嚳(1995b):問題中心教學在國中發展之經過、效果及可行性之探討。科學教育學刊,3(2),139-164。
張靜嚳(1996)。採用建構主義,如何教學。建構與教學,第七期。
教育部(1993)。國民小學課程標準。臺北:教育部。
教育部(2000)。國民中小學九年一貫課程暫行綱要。臺北:教育部。
教育部(2003)。國民中小學九年一貫課程綱要。臺北:教育部。
莊英貴(2010)。個案教師的數學教學實踐 :「學習任務」之課堂事件分析。國立臺北教育大學數學教育學系碩士論文,未出版,臺北市。
郭重吉、江武雄、王夕堯(2000)。從理論到時晤談建構主義。台中:2000年度台中縣建構教學觀摩及台中市小班教學研討習會。
陳書梅 (2002)。 從知識創新談教育效能之提升。教育資料與研究,45,62-65。
陳嘉彌(1998)。自情境教學探討徒式教育實習。教育研究資訊,6(5), 21-41。
粘孝瑲、張靜嚳 (2006) 。三角形內心的另類教學,科學教育研究與發展季刊,43,62-79。
黃文三(2005)。淺談教學活動設計與技巧。載於國立高雄第一科技大學主辦「大學新進教師教學知能研習會」論文集,頁27-59。
黃幸美、陳淑茗(2001):淺談安全的討論互動教學情境之建構。教師天地,111,27-31。
黃淑婷(2007)。故事情境教學對國小數學學習障礙學生解決面積問題之研究。國立台南大學特殊教育學系碩士論文,未出版,台南。
甯自強(1991)。藉由解題的活動瞭解兒童及促進兒童增加對數學的瞭解。教師之友,32(5),47-51。
甯自強(1993)。「建構式教學法」之教學觀—由根本建構主義的觀點來看。國教學報,5,33-41。
甯自強(1993)。國小數學新課程的精神及改革動向。科學教育學刊,1(1)。
甯自強(2000)。數學學習領域之編輯架構。高昇文教資訊,2,47-51。
楊美伶(2004)。輔導國小數學教師發展教學反思能力之研究。國立台北師範學院數理教育研究所碩士論文,未出版,台北市。
葉國平(2007)。國小六年級數學解題之基模知識及解題歷程分析-以比、圓面積為例。國立臺南大學數學教育學系碩士論文,未出版,台南市。
詹士宜(2001)。情境式數學教學面面觀。台北:師大書苑。
詹士宜(2003)。情境式數學教學面面觀。國教之友,54(2),3-10。
劉明洲,陳龍川,唐昇志 (2002)。網路主題式學習模式之建構與研究,Global Chinese Conference on Computers in Education (GCCCE2002)。
劉曼麗(2005)。小數診斷教學研究。科學教育學刊,13(1), 29-52。
劉祥通(2003)。九年一貫數學教學模組的開發與實踐(國科會專題研究計畫成果報告編號:NSC-91-2521-S-415-002)。台北:中華民國行政院國家科學委員會。
劉祥通(2005)。撲克牌融入因數教學之創意教學行動研究。教育研究集刊(TSSCI),51(1), 95-129。
劉遠楨、黃思華、許琇雅(2007)。運用認知衝突策略建構小數學習概念線上複習系統之研究。教育與心理研究,30(1),65-89。
潘鳳琴(2008)。國小五年級數學領域「因數與倍數」教學設計與學生學習歷程之行動研究。中原大學教育研究所碩士論文,未出版。
鄭毓信(1994)。數學教育哲學。臺北:九章。
翰林出版事業(2010)。翰林第十一冊數學科教學指引。台南:翰林出版事業股份有限公司。
翰林出版事業股份有限公司(2010)。國民小學數學課本、習作第十一冊。台南:翰林出版事業股份有限公司。
謝如山(譯)(2005)。 C. A. Riedsel, J. E. Haller, & J. F. Soltis著。 數學科教材教法(Teaching elementary school mathematics)。臺北:五南。
鍾靜(2005)。論數學課程近十年之課程。教育研究月刊,133,124-134。
鐘啟泉(2007)。“有效教學”研究的價值。教育研究,6,31-35。
鐘啟泉、崔允漷、張華(主編)(2001)。為了中華民族的復興,為了每位學生的發展——基礎教育課程改革綱要(試行)解讀。上海:華東師範大學出版社。
顧泠沅、鮑建生、黃榮金、易凌峰(2003)。變式教學研究(再續)。數學教學,2003(3),6-12。
英文部分
Ausubel, D. P. (1968). Educational psychology: A cognitive view. New York: Holt, Rinehart & Winston.
Bell, A. W. (1993). Diagnostic teaching. Paper presented at the 7th international Congress on Mathematical Education, Quebec, Canada.
Borko, H., & Livingston, C. (1989). Cognition and improvisation:Differences in
mathematics instruction by expert and novice teachers. American Educational Research Journal, 26, 473- 498.
Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of
learning. Education Researcher,18 (1), 32-41.
Bruner, J. S.(1966). Toward a Theory of Instruction. Cambridge, MA: Harvard University.
Bygate, M., Skehan, O., & Swain, M. (Eds.). (2001). Researching pedagogic
tasks: Second language learning, teaching and testing. Harlow, England:Longman.
Calderhead, J. (1981). A psychological approach to research on teachers’ classroom
decision-making. British Educational Research Journal, 7, 51-57.
Charon, J. M. (1998). Symbolic interactionism:An introduction, An interpretation, An integration. Upper Saddle River, New Jersey: Prentice Hall.
Clark, C. M., & Peterson, P. L. (1986). Teachers’ thought processes. In M. C.Wittrock(Ed.),Handbook of research on teaching (3rd ed., pp. 255-296). London: MacmillanPublishers.
Clarke, D. J., Emanuelsson, J., Jablonka, E. & Mok, I.A.C.(2006). Making Connections:Comparing Mathematics Classrooms Around the World. ROTTERDAM / TAIPEI:SENSE PUBLISHERS.
Clarke, D. J., Keitel, C., & Shimizu, Y.(2006). Mathematics Classrooms in Twelve Countries : The Insider's Perspective . ROTTERDAM / TAIPEI:SENSE PUBLISHERS.
Clements, D. H. (2002). Linking research and curriculum development. In L. D. English (Ed.). Handbook of international research in mathematics education (pp. 599-630). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
Creswell, J. W. (2003). Research design: Qualitative, quantitative, and mixed method approaches. Thousand Oaks, CA: Sage.
Davydov, V. V., & Radzikhovskii, L. A. (1985) . Vygotsky's theory and the activity-oriented approach in psychology. In J. V. Wertsch (Ed.) . Culture, communication, and cognition: Vygotskian perspectives (pp.35-65) . NY: Cambridge University Press.
Doyle,W. (1988). Work in mathematics classes: The content of students ’thinking during instruction. Educational Psychologist, 23, 167-180.
Dubinsky, E. D. (1992). Development of the Procss Conception of Function. EducationalStudies in Mathematics,23,247-258.
Dunkin, M. J., &Biddle, B. J. (1974). The Study of Teaching. New York: Holt,Rinehart and Winston, Inc.
Glover, J. A., & Bruning, R. H. (1990). Educational Psychology (3rd ed.). Boston: Harper Collins.
Gravemeijer, K. (1994). Developing Realistic Mathematics Education. Utrecht:CD β-Press.
Herbst,P(2008). The teacher and the task.Proceedings of the 32th Conference of the International Group for the Psychology of Mathematics Education, vol.1, (pp.125-131). July 17-22. Mexico, Morelia, Michoacan University of Saint Nicholas of Hidalgo.
Kaur, B. (2009). Characteristics of good mathematics teaching in Singapore grade 8 classrooms: A juxtaposition of teachers, practice and students, perceptions. ZDM-The International journal on Mathematics Education. In this issue.
Known, J, S. (1989). A cognitive model of conceptual change in science learning. Physics Teaching, 7(1), 1-9.
Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. NY: Cambridge University Press.
Lesh, R. (1979). Mathematical learning disabilities: consideration for identification, diagnosis, and remediation. In R. Lesh, D. Mierkiewicz, & M. G. Kantowsk﹙Eds.﹚, Applied Mathematical Problem Solving. Columbus, OH: ERIC/SMEAC.
Long, M. H., & Crookes, G. (1992). Three approaches to task-based syllabus
design. TESOL Quarterly, 26 (1), 27-56.
Marton, F., & Booth, S. (1997). Learning and awareness. Mahwah, NJ: Lawrence Eribaum Associates.
Marton, F., Runesson, U., & Tsui, A. B. M. (2003). The space of learning. In F. Marton, A. B. M. Tsui, P. P. M. Chik, P. Y. Ko, M. L. Lo, & I. A. C. Mok (Eds.), Classroom discourse and the space of learning (pp. 3-40). N.J.: Lawrence Erlbaum.
Mayer, R. E. (1987). Educational Psychology:A cognitive approach. Boston: Little, Brown and Company.
Mayer, R. E., & Wittrock, M. C. (1996). Problem solving transfer. In D. C. Berliner & R. C. Calfee (Eds.), The handbook of educational psychology (pp.47-62). New York: Macmillan.
McIntyre, D. I. (1980). Systematic observation of classroom activities.Educational Analysis, 2(2), 3-30.
Mok, I. A. C. (2004). Learning tasks. In D. J. Clarke (Chair), Lesson events as the basis for international comparisons of classroom practice. Symposium conducted at the Annual Meeting of the American Educational Research Association. San Diego.
National Council of Teachers of Mathematics. (1989). Curriculum and Evaluation Standards for School Mathematics. Reston, VA: NCTM.
National Council of Teachers of Mathematics (2000). The Principles and Standards for School Mathematics. Reston, VA:NCTM.
Nolen, S. B.(1996). Why study? How reasons for learning influence strategy selection. Educational Psychology Review, 8, 335-355.
Nolen, S. B. (2003). Learning environment,motivation, and achievement in high school science. Journal of Research in Science Teaching,40(4), 347-368.
Piaget, J. (1970). Genetic Epistemology. New York, NY: Columbia University Press.
Prabhu,N.S.(1987)Second language pedagory.New York:Oxford University.
Richards, J. (1991). Mathematical discussions. In E. von Glasersfeld (Ed.), Radical constructivism in mathematics education. pp. 13-51. Dordrecht, Netherlands: Kluwer.
She, H. C., & Fisher, D. (2002). Teacher communication behavior and it’s association with students’ cognitive and attitudinal outcomes in science in Taiwan. Journal of Research in Science Teaching, 39(1), 63-78.
Shimizu, Y. (2010, August). In search of excellence in mathematics education. In Y. Shimizu, Y. Sekiguchi & K. Hino, On the role of tasks in mathematics classrooms: Proceedings of 5th EARCOME, Vol 1 (pp 144-151). Tokyo, Japan : Association of Mathematics Educators.
Sowder, L. (1988). Children’s solution of story problems. Journal of Mathematical Behavior, 7, 227-238.
Sternberg, R. J. (1996).Cognitive psychology. Fort Worth:Harcourt Brace College.
Stodolsky, S. (1988). The Subject Matters: Classroom Activity in Math and Social Studies. Chicago: The University of Chicago Press.
von Glasersfeld, E. (1989). Cognition construction of knowledge and teaching.Synthese,80 (1), 121-140.
von Glasersfeld, E. (1995). Radical constructivism:A way of knowing and learning.London:The Falmer Press.
Westerman D.A.,(1991). Expert and novice teacher decision making. Journal of
teacher Education, 42, 4, 292-305.
Wheatley, G. H. (1991). Constructivist perspectives on science and mathematics learning.Science Education,75(1),9-21.