研究生: |
楊川毅 Yang, Chuan-Yi |
---|---|
論文名稱: |
雙極性傳輸有機薄膜電晶體特性研究 Studies of ambipolar conduction in organic thin-film transistors |
指導教授: |
吳孟奇
Wu, Meng-Chyi 朱治偉 Chu, Chih-Wei |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 125 |
中文關鍵詞: | 雙極性 、有機薄膜電晶體 、介面修飾 |
外文關鍵詞: | ambipolar, organic thin-film transistor, interfacial modification |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在傳統互補式金氧半薄膜電晶體的應用上,雙極性傳輸是一基本且重要的特性。不過在以往關於有機半導體的研究中,有機材料通常被視為僅具備單一載子傳輸特性;而事實上,只要透過適當的介面修飾處理,原本被視為僅具單一載子傳輸特性的電晶體元件,亦可呈現雙極性載子傳輸特性。本論文的主旨即在探討如何透過修飾兩個重要介面:其一為在介電層與通道層間,其二為在通道層與源/汲極電極間,進而達到理想匹配的雙極性載子傳輸特性。首先在第一個介面的處理上,一般常用來作為閘極介電層的二氧化矽上本質存在有矽醇基團,而這些矽醇基已被證實與阻礙N型載子即電子的堆積有很大的關係,因此我們利用高分子材料(如聚甲基丙烯酸甲酯等)來修飾其表面,減少介面上會捕捉電子的缺陷密度,進而幫助N型傳導的產生。而在另一個介面上,在半導體層與源/汲極電極間插入一超薄奈米級介面修飾層(如氟化鋰、碳酸銫等),若將此層厚度控制在極薄之一奈米以下,則此修飾層的存在除可幫助電子的注入外,對於原本P型載子即電洞的傳輸亦不致有太大的抑制。本論文中除探討雙極性載子傳輸特性之外,對於影響單一載子傳輸的因素如有機材料本質、分子排列、介電層選擇、與元件結構等亦在第二章中探討。此外,在第五章中也討論雙層雙極性傳輸結構,並比較其與單層雙極性傳輸結構的優劣。在本研究中,無須繁雜的多道製程與步驟,藉由單一主動層與兩個重要介面修飾即可實現平衡匹配的雙極性傳輸特性,大幅簡化製作的難度與提升雙極性傳輸元件的實用性與未來性。
Ambipolar conduction is an essential and fundamental property in the application of the conventional inorganic complementary metal-oxide-semiconductor thin film transistors. Though in the past, the researchers usually regarded organic semiconductors as the materials that can only be capable of transport unipolar carrier. In fact, ambipolar conduction can be achieved through a proper interfacial modification in organic field-effect transistors. The main topic of this thesis is how to achieve a balanced and matched ambipolar conduction through two important interfacial modification: one is between the gate dielectric and organic semiconductor, the other is between the organic semiconductor and metal electrodes. As for the first interfacial treatment, there exists the silanol groups on the surface of the gate dielectric silicon dioxide layer, and the deep correlation between the presence of the silanol groups and the limit of the electron accumulation has been proved. Therefore, we introduce a polymer (e.g. polymethylmethacrylate) as the interfacial modified layer to lower the density of the electron traps, and facilitate the formation of N-channel conduction. As for the second interface, inserting an ultrathin nano-scaled interlayer (e.g. LiF, Cs2CO3) between organic semiconductor and metal electrode can further enhance the ambipolar conduction. If we control the thickness of this interfacial interlayer no more than 1 nm, and the presence of the ultrathin nano-scaled interlayer could not only facilitate the electron injection but it wouldn’t limit the p-channel conduction. Therefore controlling the thickness of the interlayer within a certain limit can achieve a balanced and matched ambipolar conduction. In addition to ambipolar characteristic, chapter 2 would discuss the factors that influence the unipolar conduction such as the intrinsic property of organic semiconductors, the ordering and alignment of organic molecules, the choices of high-κ dielectric, and the architecture of device structure. Besides, chapter 5 would investigate the bi-layer amipolar field-effect transistors, and compare the pros and cons with those of the single-component counterpart. In this studies, without complicated and multiple fabrication processes, balanced and matched ambipolar characteristic can be easily achieved merely through single active layer and two interfacial modifications. Utilizing this technique to fabricate the ambipolar transistors can immensely simplify the difficulties of fabrication and make the practical applications of ambipolar field-effect transistors more feasible and promising.
References
[1] C. D. Dimitrakopoulos, and P. R. L. Malenfant, Adv. Mater., 14, 99 (2002).
[2] C. D. Dimitrakopoulos, and D. J. Mascaro, IBM J. Res. & Dev., 45, 11 (2001).
[3] A. Tsumura, H. Koezuka, and T. Ando, Appl. Phys. Lett., 49, 1210 (1986).
[4] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, IEEE Electron Dev. Lett., 18, 87 (1997).
[5] G. Horowitz, Adv. Mater., 10, 365 (1998).
[6] Z. Zaumseil, and H. Sirringhaus, Chem. Rev., 107, 1296 (2007).
[7] A. Salleo, M. L. Chabinyc, M. S. Yang, and R. A. Street, Appl. Phys. Lett. 81, 4383 (2002).
[8] G. Horowitz, X. Z. Peng, D. Fichou, and F. Garnier, Synth. Met. 51, 419 (1992).
[9] Y.-Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Electron Device Lett., 18, 606 (1997).
[10] M. P. Hong, B. S. Kim, Y. U. Lee, K. K. Song, J. H. Oh, J. H. Kim, T. Y. Choi, M. S. Ryu, and K. Chung, S. Y. Lee, B. W. Koo, J. H. Shin, E. J. Jeong, and L. S. Pu, SID 05 DIGEST, 23, 2005.
[11] Oana D. Jurchescu, Jacob Baas, and Thomas T. M. Palstra, Appl. Phys. Lett. 84, 3061, (2004).
[12] Z. Bao, A. Dodabalapur, and A. J. Lovinger, Appl. Phys. Lett. 69, 4108 (1996).
[13] H. Sirringhaus, N. Tessler, and R. H. Friend, Science 280, 1741 (1998).
[14] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, Science 401, 685 (1999).
[15] H. Sirringhaus, Adv. Mater. 17, 2411 (2005).
[16] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature 347, 539 (1990).
[17] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).
[18] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, Science 401, 685 (1999).
[19] M. Redecker, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, Appl. Phys. Lett. 74, 1400 (1999).
[20] X. L. Chen, A. J. Lovinger, Z. Bao, and J. Sapjeta, Chem. Mater. 13, 1341 (2001).
[21] M. L. Swiggers, G. Xia, J. D. Slinker, A. A. Gorodetsky, G. G. Malliaras, R. L. Headrick, B. T. Weslowski, R. N. Shashidhar, and C. S. Dulcey, Appl. Phys. Lett. 79, 1300 (2001).
[22] K. R. Amundson, B. J. Sapjeta, A. J. Lovinger, and Z. Bao, Thin Solid Films 414, 143 (2002).
[23] P. Dyreklev, G. Gustafsson, O. Inganas, and H. Sutbb, Synth. Met. 57, 4093 (1993).
[24] H. Sirringhaus, R. J. Wilson, R. H. Friend, M. Inbasekaran, W. Wu, E. P. Woo, M. Grell, and D. D. C. Bradley, Appl. Phys. Lett. 77, 406 (2000).
[25] S. P. Li, C. J. Newsome, D. M. Russell, T. Kugler, M. Ishida, and T. Shimoda, Appl. Phys. Lett. 87, 062101 (2005).
[26] M. Misaki, M. Chikamatsu, Y. Yoshida, R. Azumi, N. Tanigaki, K. Yase, S. Nagamatsu, and Y. Ueda, Appl. Phys. Lett. 93, 023304 (2008).
[27] W. Y. Chou, and H. L. Cheng, Adv. Funct. Mater. 14, 811 (2004).
[28] T. Fujiwara, J. Locklin, and Z. Bao, Appl. Phys. Lett. 90, 232108 (2007).
[29] S. H. Jin, H. U. Seo, D. H. Nam, W. S. Shin, J. H. Choi, U. C. Yoon, J. W. Lee, J. G. Song, D. M. Shin, and Y. S. Gal, J. Mater. Chem. 15, 5029 (2005).
[30] S. E. Fritz, T. W. Kelly, and C. D. Frisbie, J. Phys. Chem. B 109, 10574 (2005).
[31] D. J. Monsma, J. C. Lodder, T. J. A. Popma, and B. Dieny, Phys. Rev. Lett., 74, 5260 (1995).
[32] H. Edzer, A. Huitema, G. H. Gelinck, J. Bas, P. H. van der Putten, K. E. Kuijk, K. M. Hart, E. Cantatore, and D. M. DeLeeuw, Adv. Mater. (Weinheim, Ger.), 14, 1201 (2002).
[33] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, and T. N. Jackson, Appl. Phys. Lett., 80, 1088 (2002).
[34] C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, and D. M. DeLeeuw, Appl. Phys. Lett., 73, 108 (1998).
[35] F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and C. Dehm, Appl. Phys. Lett., 84, 2673 (2004).
[36] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Trans. Electron Devices, 44, 1325 (1997).
[37] C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, and J. M. Shaw, Science, 283, 822 (1999).
[38] G. Wang, D. Moses, A. J. Heeger, H. M. Zhang, M. Narasimhan, and R. E. Demaray, J. Appl. Phys., 95, 316 (2004).
[39] L. A. Majewski, M. Grell, S. D. Ogier, and J. Veres, Org. Electron., 4, 27 (2004).
[40] F. C. Chen, C. S. Chuang, Y. S. Lin, L. J. Kung, T. H. Chen, and H. P. Shieh, Org. Electron., 7, 435 (2006).
[41] R. Schroeder, L. A. Majewski, and M. Grell, Adv. Mater. (Weinheim, Ger.), 17, 1535 (2005).
[42] L. A. Majewski, R. Schroeder, and M. Grell, Adv. Mater. (Weinheim, Ger.), 17, 192 (2005).
[43] D. K. Hwang, C. S. Kim, J. M. Choi, K. Lee, J. H. Park, E. Kim, H. K. Baik, J. H. Kim, and S. Im, Adv. Mater. (Weinheim, Ger.), 18, 2299 (2006).
[44] K. Shin, C. W. Yang, S. Y. Yang, H. Jeon, and C. E. Park, Appl. Phys. Lett., 88, 072109 (2006).
[45] L. Yan, C. M. Lopez, R. P. Shrestha, E. A. Irene, A. A. Suvorova, and M. Saunders, Appl. Phys. Lett., 88, 142901 (2006).
[46] I. C. Ho, Y. Xu, and J. D. Mackenzie, J. Sol-Gel Sci. Technol., 9, 295 (1997).
[47] Dhananjay and S. B. Krupanidhi, J. Appl. Phys., 101, 123717 (2007).
[48] S. Steudel, S. D. Vusser, S. D. Jonge, D. Janssen, S. Verlaak, J. Genoe, and P. Heremans, Appl. Phys. Lett., 85, 4400 (2004).
[49] D. Kinpp, R. A. Street, A. Völkel, and J. Ho, J. Appl. Phys., 93, 347 (2003).
[30] S. E. Fritz, T. W. Kelley, and C. D. Frisbie, J. Phys. Chem. B, 109, 10574 (2005).
[51] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, and T. N. Jackson, Appl. Phys. Lett. 80, 1088 (2002).
[52] L. P. Ma and Y. Yang, Appl. Phys. Lett. 85, 5084 (2004).
[53] C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, and D. M. deLeeuw, Appl. Phys. Lett. 73, 108 (1998).
[54] P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, and S. D. Theiss, Appl. Phys. Lett. 82, 3964 (2003).
[55] D. J. Monsma, J. C. Lodder, T. J. A. Popma, and B. Dieny, Phys. Rev. Lett. 74, 5260 (1995).
[56] H. Edzer, A. Huitema, G. H. Gelinck, J. Bas, P. H. van der Putten, K. E. Kuijk, K. M. Hart, E. Cantatore, and D. M. DeLeeuw, Adv. Mater. 14, 1201 (2002).
[57]B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. Laduca, R. Sarpeshkar, H. E. Katz, and W. Li, Nature 403, 521 (2000).
[58] F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and C. Dehm, Appl. Phys. Lett. 84, 2673 (2004)
[59] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Trans. Electron Devices 44, 1325 (1997)
[60] C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002)
[61] M. S. Meruvia and I. A. Hummelgen, Adv. Func. Mater. 16, 459 (2006)
[62] S. Fujimoto, K. Nakayama, and M. Yokoyama, Appl. Phys. Lett. 87, 133503 (2005).
[63] T. M. Ou, S. S. Chang, M. C. Wu, I. M. Chang, S. Y. Lin, and Y. J. Chan, unpublished.
[64] Y. C. Chao, S. L. Yang, H. F. Meng, and S. F. Horng, Appl. Phys. Lett. 87, 253508 (2005).
[65] S. J. Kang, D. S. Park, S. Y. Kim, C. N. Whang, K. Jeong, and S. Im, Appl. Phys. Lett. 81, 2581 (2002).
[66] H. Sirringhaus, N. Tessler, and R. H. Friend, Science 280, 1741 (1998).
[67] L. L. Chua, R. H. Friend, and P. K. H. Ho, Appl. Phys. Lett. 87, 253512 (2005).
[68] C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, and D. M. deLeeuw, Appl. Phys. Lett. 73, 108 (1998).
[69] P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, and S. D. Theiss, Appl. Phys. Lett. 82, 3964 (2003).
[70] D. J.Monsma, J. C. Lodder, T. J. A. Popma, and B. Dieny, Phys. Rev. Lett. 74, 5260 (1995).
[71] M. S. Meruvia and I. A. Hummelgen, Adv. Funct. Mater. 16, 459 (2006).
[72] M. D. Austin and S. Y. Chou, Appl. Phys. Lett. 81, 4431 (2002).
[73] C.-Y. Yang, T.-M. Ou, S.-S. Cheng, M.-C. Wu, S.-Y. Lin, I.-M. Chan, and Y.-J. Chan, Appl. Phys. Lett. 89, 183511 (2006).
[74] T.-M. Ou, S.-S. Cheng, C.-Y. Huang, M.-C. Wu, I.-M. Chan, S.-Y. Lin, and Y.-J. Chan, Appl. Phys. Lett., 89, 183508 (2006).
[75] L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett. 70, 152 (1996).
[76] S. Hoshino, S. Nagamatsu, M. Chikamatsu, M. Misaki, Y. Yoshida, N. Tanigaki, and K. Yase, Jpn. J. Appl. Phys. 41, L 808 (2002).
[77] C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).
[78] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Trans. Electron Devices 44, 1325 (1997).
[79] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Electron Device Lett.18, 606 (1997).
[80] Y. C. Chao, S. L. Yang, H. F. Meng, and S. F. Horng, Appl. Phys. Lett. 87, 253 508 (2005).
[81] B. Crone, A. Dodabalapur, Y.-Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, and W. Li, Nature 403, 521 (2000).
[82] A. Dodabalapur, H. E. Katz, L. Torsi, and R. C. Haddon, Science 269, 1560 (1995).
[83] H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y.-Y. Lin, and A. Dodabalapur, Nature 404, 478 (2000).
[84] A. Babel and S. A. Jenekhe, J. Am. Chem. Soc. 125, 13656 (2003).
[85] E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B. -H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, and T. M. Klapwijk, Nature Mater. 2, 678 (2003).
[86] L. L. Chua, P. K. H. Ho, H. Sirringhaus, and R. H. Friend, Appl. Phys. Lett. 84, 3400 (2004).
[87] L. L. Chua, J. Zaumseil, J. -F. Chang, Eric C.-W. Ou, Peter K.-H. Ho, H. Sirringhaus, and R. H. Friend, Nature 434, 194 (2005).
[88] C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. (Weinheim, Ger.) 14, 99 (2002).
[89] E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. Van Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, and T. M. Klapwijk, Nat. Mater. 2, 678 (2003).
[90] M. Kitamura and Y. Arakawa, Appl. Phys. Lett. 91, 053505 (2007).
[91] J. Shi, H. Wang, D. Song, H. Tian, Y. Geng, and D. Yan, Adv. Funct. Mater. (Weinheim, Ger.) 17, 397 (2007).
[92] S. Cho, J. Yuen, J. Y. Kim, K. Lee, and A. J. Heeger, Appl. Phys. Lett. 89, 153505 (2006).
[93] H. Klauk, M. Halik, U. Zschieschang, F. Eder, D. Rohde, G. Schmid, and C. Dehm, IEEE Trans. Electron Devices 52, 618 (2005).
[94] D. J. Gundlach, K. P. Pernstich, G. Wilckens, M. Grüter, S. Haas, and B. Batlogg, J. Appl. Phys. 98, 064502 (2005).
[95] T. D. Anthopoulos, D. M. de Leeuw, E. Cantatore, S. Setayesh, E. J. Meijer, C. Tanase, J. C. Hummelen, and P. W. M. Blom, Appl. Phys. Lett. 85, 4205 (2004).
[96] T. B. Singh, P. Senkarabacak, N. S. Sariciftci, A. Tanda, C. Lackner, R. Hagelauer, and G. Horowitz, Appl. Phys. Lett. 89, 033512 (2006).
[97] H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y. Y. Lin, and A. Dodabalapur, Nature (London) 404, 478 (2000).
[98] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming, Appl. Phys. Lett. 67, 121 (1995).
[99] T. F. Guo, Z. J. Tsai, S. Y. Chen, T. C. Wen, and C. T. Chung, J. Appl. Phys. 101, 124505 (2007).
[100] T. B. Singh, F. Meghdadi, S. Günes, N. Marjanovic, G. Horowitz, P. Lang, S. Bauer, and N. S. Sariciftci, Adv. Mater. (Weinheim, Ger.) 17, 2315 (2005).
[101] N. Benson, M. Schidleja, and C. Melzer, Appl. Phys. Lett. 89, 182105 (2006).
[102] M. Ahles, R. Schmechel, and H. von Seggern, Appl. Phys. Lett. 85, 4499 (2004).
[103] L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, and R. H. Friend, Nature (London) 434, 194 (2005).
[104] C. Rost, D. J. Gundlach, S. Karg, and W. Rieß, J. Appl. Phys. 95, 5782 (2004).
[105] T. D. Anthopoulos, S. Setayesh, E. Smits, M. Cölle, E. Cantatore, B. de Boer, P. W. M. Blom, and D. M. de Leeuw, Adv. Mater. (Weinheim, Ger.) 18, 1900 (2006).
[106] T. D. Anthopoulos, G. C. Anyfantis, G. C. Papavassiliou, D. M. de Leeuw, Appl. Phys. Lett. 90, 122105 (2007).
[107] T. S. Huang, Y. K. Su, and P. C. Wang, Appl. Phys. Lett. 91, 092116 (2007).
[108] J. Puigdollers, C. Voz, A. Orpella, R. Quidant, I. Martin, M. Vetter, and R. Alcubilla, Org. Electron. 5, 67 (2004).
[109] W. Y. Chou, C. W. Kuo, H. L. Cheng, and Y. R. Chen, Appl. Phys. Lett. 89, 112126 (2006).
[110] C. R. Kagan and P. Andry, Thin-Film Transistors (Marcel Dekker, Inc., New York, 2003), p. 87.
[111] X. Yan, J. Wang, H. Wang, H. Wang, and D. Yan, Appl. Phys. Lett. 89, 053510 (2006).
[112] M. Ling, Z. Bao, P. Erk, M. Koenemann, and M. Gomez, Appl. Phys. Lett. 90, 093508 (2007).
[113] A. Dodabalapur, H. E. Katz, L. Torsi, and R. C. Haddon, Science 269, 1560 (1995).
[114] E. J. Meijer, D. M. DeLeeuw, S. Setayesh, E. Van Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, and T. M. Klapwijk, Nat. Mater. 2, 678 (2003).
[115] T. D. Anthopoulos, D. M. de Leeuw, E. Cantatore, S. Sateyesh, E. J. Meijer, C. Tanase, J. C. Hummelen, and P. W. M. Blom, Appl. Phys. Lett. 85, 4205 (2004).
[116] C. Rost, D. J. Gundlach, S. Karg, and W. Riess, J. Appl. Phys. 95, 5782 (2004).
[117] S. Cho, J. Yuen, J. Y. Kim, K. Lee, and A. J. Heeger, Appl. Phys. Lett. 89, 153505 (2006).
[118] C. W. Chu, S. H. Li, C. W. Chen, V. Shrotriya, and Y. Yang, Appl. Phys. Lett. 87, 193508 (2005).
[119] T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada, and M. Tsuchida, IEEE Trans. Electron Devices 44, 1245 (1997).
[120] S. Y. Chen, T. Y. Chu, J. F. Chen, C. Y. Su, and C. H. Chen, Appl. Phys. Lett. 89, 053518 (2006).
[121] C. W. Chu, C. F. Sung, Y. Z. Lee, and K. Cheng, Org. electron. 9, 262 (2008).
[122] C. Y. Yang, S. S. Cheng, C. W. Ou, Y. C. Chuang, M. C. Wu, Dhananjay, and C. W. Chu, J. Appl. Phys. 103, 094519 (2008).
[123] B. Masenelli, D. Berner, M. N. Bussac, F. Nuesch, and L. Zuppiroli, Appl. Phys. Lett. 79, 4438 (2001).
[124] M. Matsumura and Y. Jinde, Appl. Phys. Lett. 73, 2872 (1998).
[125] T. Mori, H. Fujikawa, S. Tokito, and Y. Taga, Appl. Phys. Lett. 73, 2763 (1998).
[126] B. Crone, A. Dodabalapur, Y.-Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, W. Li, Nature (London) 403 (2000) 521.
[127] L. Zhou, A. Wanga, S. C. Wu, J. Sun, S. Park, T. N. Jackson, Appl. Phys. Lett. 88 (2006) 083502.
[128] P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, S. D. Theiss, Appl. Phys. Lett. 82 (2003) 3964.
[129] R. Rotzoll, S. Mohapatra, V. Olariu, R. Wenz, M. Grigas, K. Dimmler, O. Shchekin, A. Dodabalapur, Appl. Phys. Lett. 88 (2006) 123502.
[130] G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. van Rens, D. M. de Leeuw, Nat. Mater. 3 (2004) 106.
[131] L. S. Hung, C. W. Tang, M. G. Mason, Appl. Phys. Lett. 70 (1997) 152.
[132] C. W. Chu, S. H. Li, C. W. Chen, V. Shrotriya, Y. Yang, Appl. Phys. Lett. 87 (2005) 193508.
[133] J. Huang, G. Li, E. Wu, Q. Xu, Y. Yang, Adv. Mater. 18 (2006) 114.
[134] C. W. Chu, C. F. Sung, Y. Z. Lee, K. Cheng, Organic Electronics 9 (2008) 262.
[135] G. Li, C. W. Chu, V. Shrotriya, J. Huang, Y. Yang, Appl. Phys. Lett. 88 (2006) 253503.
[136] F. C. Chen, J. L. Wu, S. S. Yang, K. H. Hsieh, W. C. Chen, J. Appl. Phys. 103 (2008) 103721.
[137] H. H. Liao, L. M. Chen, Z. Xu, G. Li, Y. Yang, Appl. Phys. Lett. 92 (2008) 173303.
[138] T. Hasegawa, S. Miura, T. Moriyama, T. Kimura, I. Takaya, Y. Osato, H. Mizutani, SID Int. Symp. Digest Tech. Papers 35 (2004) 154.
[139] C. Y. Yang, Dhananjay, S. S. Cheng, C. W. Ou, Y. C. Chuang, M. C. Wu, C. W. Chu, Appl. Phys. Lett. 92 (2008) 253307.
[140] S. Y. Chen, T. Y. Chu, J. F. Chen, C. Y. Su, C. H. Chen, Appl. Phys. Lett. 89 (2006) 053518.
[141] Y. Li, D. Q. Zhang, L. Duan, R. Zhang, L. D. Wang, Y. Qiu, Appl. Phys. Lett. 89 (2006) 053518.
[142] J. Huang, Z. Xu, Y. Yang, Adv. Funct. Mater. 17 (2007) 1966.
[143] C. I. Wu, C. T. Lin, Y. H. Chen, M. H. Chen, Y. J. Lu, C. C. Wu, Appl. Phys. Lett. 88 (2006) 152104.
[144] B. Y. Yu, Y. Y. Chen, W. B. Wang, M. F. Hsu, S. P. Tsai, W. C. Lin, Y. C. Lin, J. H. Jou, C. W. Chu, J. J. Shyue, Anal. Chem. 80 (2008) 3412.
[145] T. R. Briere, A. H. Sommer, J. Appl. Phys. 48 (1977) 3547.
[146] A. H. Sommer, J. Appl. Phys. 51 (1980) 1254.
[147] C. Y. Yang, S. S. Cheng, C. W. Ou, Y. C. Chuang, M. C. Wu, Dhananjay, C. W. Chu, J. Appl. Phys. 103 (2008) 094519.
[148] T. F. Guo, Z. J. Tsai, S. Y. Chen, T. C. Wen, C. T. Chung, J. Appl. Phys. 101, 124505 (2007).
[149] P. N. Murgatroyd, J. Phys. D 3 (1970) 151.
[150] W. D. Gill, J. Appl. Phys. 43 (1972) 5033.
[151] T. D. Anthopoulos, B. Singh, N. Marjanovic, N. S. Sariciftci, A. M. Ramil, and H. Sitter, Appl. Phys. Lett. 89, 213504 (2006).
[152] R. Ruoff, D. Tse, R. Malhotra, D. Lorents, J. Phys. Chem. 97, 3379 (1993).
[153] N. Sivaraman, R. Dhamodaran, I. Kaliappan, T. Srinivasan, P. Rao, C. Mathews, J. Org. Chem. 57, 6077 (1992).