簡易檢索 / 詳目顯示

研究生: 林昱君
Lin, Yu-Jun
論文名稱: 結合擴增實境與卡牌操作之虛擬實驗設計與學習成效分析-以國中化學鋅銅電池實驗為例
Virtual Experiment Design and Learning Achievement Analysis Based on Augmented Reality and Card Operation-An Example of Junior High School Chemical Daniell cell Experiment
指導教授: 唐文華
Tarng, Wernhuar
區國良
Ou, Kuo-Liang
口試委員: 李紫原
Lee, Chi-Young
游坤明
Yu, Kun-Ming
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 學習科學與科技研究所
Institute of Learning Sciences and Technologies
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 104
中文關鍵詞: 擴增實境虛擬實驗化學鋅銅電池探究式學習
外文關鍵詞: Augment reality, Virtual experiment, Chemistry, Daniell cell, Inquiry-based learning
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化學是一門理論與實驗並重的科學,在理論知識的基礎下,實驗操作可幫助學生理解概念與內化知識,並將理論知識轉化為實踐知識,進而培養學生的觀察能力、思維能力以及良好的學習習慣,因此實驗操作是化學課程不可或缺的一環。在升學制度的壓力下,學校的教學多以考試為重,加上實驗器材或時間不足以及安全性等問題,老師往往以文字、圖片或影片的方式講述實驗內容以替代實驗操作,或是將實驗過程簡化成一行行學生必須遵循的指令,而不是讓學生在操作過程進行知識的探索與連結。這種教學方式不但忽視實驗對理解化學概念的重要性,也影響學生的學習動機及核心概念與技能的建構。
    本研究結合擴增實境的高互動性與真實感以及卡牌遊戲的趣味性,針對國中化學實驗課程開發出一套虛擬實驗App軟體。使用者可透過智慧型手機或平板電腦的操作來進行化學實驗,並藉由探究式的學習過程來增進對核心概念的認知。使用者可以從卡牌中挑選所需的器材進行操作,並可進入微觀世界以瞭解化學反應過程。本研究以創新的學習科技來培養學生的探究力和問題解決能力,學生可以從虛擬的實驗環境中獲得具體的知識與概念,在探索過程中激發其學習動機與興趣,提升化學知識、概念。
    研究結果發現,操作虛擬實驗與真實實驗對於化學學習皆有顯著的學習成效,但對照組低成就學生沒有明顯的學習成效,而實驗組低成就學生的學習成效顯著優於對照組低成就學生。在持續學習一個月後,實驗組與對照組的學習成效表現皆有顯著提升,兩組高成就學生的學習成效沒有顯著差異,而實驗組低成就學生的學習成效顯著優於對照組低成就學生,表示虛擬實驗對於提升低成就學生的化學學習成效優於真實實驗。


    Chemistry is a science that emphasizes both theory and experiment. Based on theoretical knowledge, experimental operations can help students understand concepts and knowledge internalization, and transform theoretical knowledge into practical knowledge. They can also cultivate students' observation ability, thinking ability and good learning habits. Therefore, the experimental operation is an indispensable part of chemistry curriculum. Under the pressure of the examination system, school teaching is mostly concentrate on examinations. In addition to the problems of experimental equipment, lack of time and safety, teachers often use words, pictures or videos to tell the experimental content instead of the experimental operation, or simplify the experimental process into a line of instructions that students must follow, rather than allowing students to explore and connect knowledge in the operational process. This teaching method not only ignores the importance of experiment in understanding chemical concepts, but also affects students' learning motivation and the construction of core concepts and skills.
    In this study, a set of virtual experiment App software is developed for junior middle school chemistry experiment course, which combines the high interaction and reality of the expanded reality and the interest of card games. Users can conduct chemical experiments through the operation of smart phones or tablets, and enhance the understanding of core concepts through the inquiry learning process. Users can select the necessary equipment from the cards and operate according to the experimental steps. They can enter the micro-world to understand the chemical reaction process. In this study, innovative learning technology can cultivate students' inquiry ability and problem solving ability. Students can acquire specific knowledge and concepts from the virtual experimental environment, stimulate their learning motivation and interest in the process of exploration, which is very helpful to enhance chemical knowledge, concepts.
    The experimental results show that operating virtual experiments and real experiments have significant learning effects on chemistry learning, but the low-achievement students in the control group have no obvious learning effectiveness, while the low-achievement students in the experimental group have significantly better learning results than the low-achievement students in the control group. After one month of continuous learning, the learning effectiveness of the experimental group and the control group are significantly improved. There is no significant difference in the learning effectiveness of the two groups of high-achievement students, while the experimental group’s low-achievement students’ learning performance is significantly better than the control group’s low-achievement students. Indicates that the virtual experiment is better than the real experiment in improving the chemistry learning effectiveness of low achievement students.

    摘要...............................................................ⅰ 誌謝..............................................................iv 目次...............................................................v 表目次...........................................................vii 圖目次............................................................ix 第一章、緒論........................................................1 第一節、研究背景與動機........................................1 第二節、研究目的與問題........................................2 第三節、研究範圍與限制........................................3 第四節、名詞釋義..............................................4 第二章、文獻探討....................................................5 第一節、虛擬實境..............................................5 第二節、擴增實境..............................................8 第三節、探究式學習...........................................12 第四節、虛擬實驗.............................................13 第五節、鋅銅電池實驗.........................................15 第三章、研究方法...................................................19 第一節、研究架構與設計.......................................19 第二節、研究對象.............................................24 第三節、研究工具.............................................24 第四章、軟體開發...................................................27 第一節、軟體開發環境與工具...................................27 第二節、軟體設計與操作流程...................................29 第三節、卡牌設計.............................................50 第五章、研究結果與分析.............................................53 第一節、整體學習成效之比較...................................53 第二節、高低分組學習成效之比較...............................57 第三節、後續學習成效之比較...................................63 第四節、使用者學習態度量表...................................68 第五節、使用者體驗量表.......................................75 第六章、結論與建議.................................................83 第一節、結論.................................................83 第二節、建議.................................................85 參考文獻..........................................................86 附錄..............................................................92 附錄一、學習成就測驗前測試卷.................................92 附錄二、學習成就測驗後測試卷.................................98 附錄三、使用者學習態度量表..................................103 附錄四、使用者體驗量表......................................104

    一、 中文文獻
    1. 教育部(2008)。97年國民中小學九年一貫課程綱要。取自https://cirn.moe.edu.tw/Guildline/index.aspx?sid=9
    2. 教育部(2018)。十二年國教課程綱要。取自https://cirn.moe.edu.tw/Guildline/index.aspx?sid=11
    3. 曹淇峰、廖家榮、林志弘、邱美嬌、譚利亞、蔡蘊明(2008)。探索式化學實驗課程之開發,台北市建國高級中學高瞻計畫(子計畫二)。中華民國第二十四屆科學教育學術研討會,彰化師範大學。
    4. 邱韻如(2013)。請重視中學階段的實驗教學。科學月刊,522,404-405。
    5. 鄭媖珍、邱美虹(2014)。行動科技、擴增實境與3D實驗影片教學:擴增實境在化學教學上的應用。臺灣化學教育,3,267-273。
    6. 陳建良(2009)。探究八年級學生對電化學的概念改變歷程,台北,台灣師範大學科學教育研究所,碩士論文。

    二、 英文文獻
    1. Allen, K., Austin, T., Beach, R., Bergstrom, A., Exon, S., Fabri, M., Fencott, C., Fernie, K., Gerhard, M., Grout, C., Jeffrey, S. (2002). Creating and using virtual reality: A guide for the arts and humanities, http://vads.ahds.ac.uk/guides/vr_guide/sect11.html
    2. Anderson. R. D. (2002). Reforming Science Teaching: What Research says about Inquiry. Journal of Science Teacher Education, 13(1), 1-12.
    3. Ausburn, Lynna J. & Ausburn, Floyd B. (2004). Desktop Virtual Reality: A Powerful New Technology for Teaching and Research , Journal of Industrial Teacher Education, 41(4), 1-16.
    4. Ayas, A. & Demirbas, A. (1997). Turkish secondary students’ conceptions of introductory chemistry concepts, Journal of Chemical Education, 745, 518–521.
    5. Azuma, Ronald T. (1997). A Survey of Augmented Reality. Teleoperators and Virtual Environments 6(4), 355-385.
    6. Bierbaum, Allen. (2000). VR Juggler: A Virtual Platform for Virtual Reality Application.
    7. Burdea, G.C. & Coiffet, P. (1994). Virtual Reality Technology. New York, NY, U.S.A. J. Wiley & Sons, Inc.
    8. Chen, S. (2010). The view of scientific inquiry conveyed by simulation-based virtual laboratories, Journal of Computer & Education, 55(3), 1123–1130.
    9. Clark, R. E. (1994). Media will never influence learning. Educational Technology Research and Development, 42, 21–29.
    10. Dori, Y. J., & Barak, M. (2001). Virtual and physical molecular modeling: Fostering model perception and spatial understanding.Journal of Educational Technology and Society, 4(1), 61–74.
    11. Ellis, A. K. (2002). Teaching and Learning Elementary Social. Allyn and Bacon. Boston.
    12. Hazidar H & Sulaiman. (2014). Visualization Cardiac Human Anatomy using Augmented Reality Mobile Application. International Journal of Electronics Communication and Computer Engineering. 5(3), 497–501.
    13. Herron, Marshall D. (1971). The nature of science enquiry. The School Review, 79(2), 171-212.
    14. Hofstein, A. & Lunetta, V. (1982). The role of laboratory in science teaching: neglected aspects of research. Journal of Review of Educational Research, 52, 20–217.
    15. Hofstein, A. and Lunetta, V.N. (2004). The laboratory in science education: foundation for the 21st century, Journal of Science Education, 88, 28-54.
    16. Hughes, J. E., McLeod, S., Brown, R., Maeda, Y., & Choi, Y. (2007). Academic achievement and perceptions of the learning environment in virtual and traditional secondary mathematics classrooms. The American Journal of Distance Education, 21(4), 199–214.
    17. Jang, S., Jonathan, M.V., Robert, W. &John, B. B. (2017). Direct manipulation is better than passive viewing for learning anatomy in a tree-dimensional virtual environment. Journal of Computer & Education, 106, 150-165.
    18. Kabapinar, F. & Adik, F. (2005). Secondary students’ understanding of the relationship between physical change and chemical bonding. Ankara University Journal of Faculty of Educational Sciences, 381, 123–147.
    19. Kirschner, P. & Huisman, W. (1998). Dry laboratories in science education; computer-based practicalwork. Journal of Science Education, 20, 665–682.
    20. Lee, Elinda Ai-Lim & Wong, Kok Wai. (2014). Learning with desktop virtual reality: Low spatial ability learners are more positively affected. Journal of Computer &Education, 79, 49-58.
    21. Li, J.R., Khoo, L.P. & Tor, S.B. (2003). Desktop virtual reality for maintenance training: an object oriented prototype system (V-REALISM). Journal of Computers in industry, 52(2), 109-125.
    22. Limniou, M., Papadopoulos, N., Giannakoudakis, A., Roberts, D., & Otto, O. (2007). The integration of a viscosity simulator in a chemistry laboratory. Chemistry Education Research and Practice, 8(2), 220–231.
    23. Looi, C. K. (1998). Interactive Learning Environments for Promoting Inquiry Learning. Journal of Education Technology Systems, 27(1), 3-22.
    24. Luft, J. A. (2001). Changing inquiry practices and beliefs: The impact of an inquiry-based professional development programme on beginning and experienced secondary science teachers. Journal of Science Education, 23(5), 517-534.
    25. Lunetta, V. N., Hofstein, A. & Clough, M., (2007). Learning and teaching in the school science laboratory: An analysis of research, theory, and practice, In book: Handbook of Research on Science Education, Chapter: 15, Publisher: Lawrence Erlbaum, Associate Editors: Abell, S. K. & Lederman, N. G.
    26. Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1994). Augmented reality: A class of displays on the reality-virtuality continuum. The International Society for Optics and Photonics, 2351, 282-292.
    27. Nakhleh, M. B. (1992). Why some students don’t learn chemistry: Chemical misconceptions, Journal of Chemical Education, 69, 191–196.
    28. Nataša Rizman Herga (2016). Virtual Laboratory in the Role of Dynamic Visualisation
    for Better Understanding of Chemistry in Primary School, Eurasia Journal of
    29. Mathematics, Science & Technology Education, 2016, 12(3), 593-608.
    30. Schwab, Joseph J. (1962). The Teaching of Science as Inquiry. The Teaching of Science. Journal of Bulletin of the Atomic Scientists, 14(9), 374-379.
    31. Sheppard, K. (2006). High school students’ understanding of titrations and related acid-base phenomena. Chemistry Education Research and Practice, 7(1), 32–45.
    32. Tatli, Zeynep & Ayas, Alipasa (2013). Effect of a Virtual Chemistry Laboratory on Students’ Achievement. Journal of Educational Technology & Society, 16 (1), 159–170.
    33. Tobin, K.G. (1990). Research on science laboratory activities; in pursuit of better questions and answers to improve learning, Journal of School Science and Mathematics, 90, 403-418.
    34. Triona L. & Klahr D. (2003). Point and click or grab and heft: comparing the influence of physical and virtual instructional materials on elementary school students’ ability to design experiments. Cognition and Instruction 21, 149–173.
    35. Trowbridge, L. W. & Bybee, R. W. (1986). Becoming a secondary school science teacher. Merrill Publishing Company.
    36. Wells, G. (2001). Action, Talk, and Text: Learning and Teaching Through Inquiry. Teachers College Press.
    37. Woodfield, Brian F. & Asplund, Matthew C. (2005). Virtual chemlab getting started. Pearson Education.
    38. Yang, K.Y. & Heh, J.S. (2007). The impact of internet virtual physics laboratory instruction on the achievement in physics, science process skills and computer attitudes of 10th grade students. Journal of Science Education and Technology, 16, 451–461.
    39. Zacharia, Z. C. (2007). Comparing and combining real and virtual experimentation: an effort to enhance students’ conceptual understanding of electric circuits. Journal of Computer Assisted Learning, 23(2), 120-132

    QR CODE