研究生: |
蔡文慶 Wen-Ching Tsai |
---|---|
論文名稱: |
高頻脈衝電鍍在酸性鍍銅系統之研究 High Frequency Pulse Plating in Acid Copper System |
指導教授: |
萬其超
Chi-Chao Wan 王詠雲 Yung-Yun Wang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2002 |
畢業學年度: | 91 |
語文別: | 英文 |
論文頁數: | 160 |
中文關鍵詞: | 脈衝電鍍 、電鍍銅 、添加劑 、電雙層 、電流效率 |
外文關鍵詞: | pulse plating, copper electrodeposition, additives, double layer, current efficiency |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文有系統地以理論及實驗的分析來研究高頻脈衝電鍍對酸性鍍銅系統的影響。在理論分析方面,以數值模擬的方法來預測添加劑不同的嵌入速度及電容值對電位應答及質傳的影響,並藉由分析不同脈衝週期的電位應答來解釋脈衝電鍍銅電流效率的變化。在實驗分析方面,在鍍通孔(PTH)程序中以及覆有一層銅種層的矽晶圓上,利用高頻脈衝電流(PC)及脈衝逆向電流(PR)在有添加劑及沒添加劑的電鍍液中電鍍銅,並以線性掃描伏特法(LSV)循環伏安法(CV)、阻抗分析法、掃描式電子顯微鏡(SEM)以及x-ray繞射法(XRD)來分析此鍍銅程序。本研究選用80 ppm的氯離子、100 ppm 平均分子量4000的聚乙烯醇(PEG)以及40 ppm 硫醇丙烷磺酸鹽(MPS)當添加劑並與無添加劑的鍍液比較。
在無添加劑情況下,由於過電位比較低,電容電流可以被忽略。然而,在添加劑存在下,電雙層效應在毫秒範圍的脈衝電鍍中不可被忽略。過電位的應答強烈地受到添加劑的影響。電容電流不僅會因添加劑加入使過電位上升而上升,而且也會隨著電雙層的電容值上升而上升。接著,由於對電雙層快速的充放電而使得添加劑以及金屬離子的表面濃度變化變得較平順。這些預測與在添加及沒有添加100 ppm PEG的電鍍液中以銅旋轉電極所測得的電位應答一致。
脈衝電鍍銅的電流效率在毫秒範圍時會隨著縮短脈衝週期而下降,但在微秒範圍時會隨著縮短脈衝週期而上升。縮短脈衝週期會將速率決定步驟從電子轉移及表面擴散變為第一步驟電子轉移。在毫秒範圍時會因為亞銅離子的不對稱反應以及銅吸附原子的溶解而使得電流效率隨著縮短脈衝週期而下降。然而,在微秒範圍時因為吸附原子直接打入結晶表面的階梯及階梯轉角處以及亞銅離子的不對稱反應或銅吸附原子的溶解反應來不及進行而使得電流效率隨著縮短脈衝週期而上升。
高頻PC與PR可改善PTH中鍍層的均勻性。在沒有添加劑的電鍍液中,高頻PC與PR以平均電流密度20 mA/cm2電鍍在PTH內所鍍的鍍層比低頻PC與PR所鍍的鍍層來的均勻。由阻抗分析得知,低頻的電鍍受到銅離子或亞銅離子擴散的控制,然而在高頻電鍍是受到電子轉移控制。由於在高頻時速率決定步驟由擴散控制變為電子轉移控制使得鍍層分佈獲得改善。使用PEG+MPS+Cl為添加劑時,以10 或20 mA/cm2直流電鍍可促進鍍層均勻。在添加劑的存在下,高低頻PC與PR所獲得的鍍層趨勢與沒有添加劑的情形相同。然而,使用高頻PC與PR所獲得鍍層的改善不是很明顯因為此時電鍍是屬於吸附控制。
在有添加劑及沒有添加劑的電鍍液中,銅鍍層的電阻率會隨著PC與PR頻率的增加而降低。隨著頻率增加,由於過電位隨著脈衝頻率增加而下降而使得鍍層變得更平整且結晶變得更大,因此而使得電阻率下降。另外,高頻電鍍時其(200)結晶面所佔的比例會增加,這個結果也會使得電阻率下降。添加劑加入時,由於此類的添加劑會促進電鍍速率,因此在相同的電流密度下,所得的過電位也就較低,此結果使得添加劑存在下鍍層的電阻率比沒有添加劑的鍍層來得低。
In this dissertation, the effects of high frequency pulse plating on copper deposition in acid copper system were theoretically and experimentally studied. In the part of theoretical analysis, numerical simulations were employed to predict the influence of additive with various inclusion rates and capacities on potential response and mass transfer. The analyses of potential responses at various pulse periods were employed to account for the variation of current efficiency by pulse current. In the experimental analysis, copper electrodeposition in plated-through-hole (PTH) process and onto copper seed layer over silicon wafer by high frequency pulse current (PC) and pulse-reverse current (PR) were characterized by linear sweep voltammetry (LSV), cyclic voltammogram (CV), impedance, scanning electron microscopy (SEM) and x-ray diffraction (XRD). 80 ppm chloride ions (Cl-), 100 ppm polyethylene glycol (PEG) with 4000 average molecular weight and 40 ppm 3-mercapto-1-propanesulfonate (MPS) were used as additives and compared with the baths without additives.
In the absence of additives, capacitive current density can be neglected owing to the smaller overpotential. However, the double layer effect can not be neglected in the millisecond range pulse plating in the presence of additives. Overpotential response is strongly affected by the presence of additives. Capacitive current density not only increases in the presence of additives due to increase in overpotential but also increases with increasing capacity of double layer. Then, the variation of surface concentrations of additives and metal ions diminishes as a result of the fast charging and discharging of the double layer. This prediction is consistent with the experimental overpotential response on a copper rotating disk electrode in a bath with and without 100 ppm PEG.
The current efficiency of copper deposition decreases with shortening pulses in the millisecond range but increases with shortening pulses in the microsecond range. Shortening the pulse period could change the rate-determining step from the first-step charge transfer and surface diffusion to the first-step charge transfer. Only in the millisecond range, the current efficiency decreases with shortening pulse period due to the disproportionation of cuprous ions and the dissolution of copper adatom. However, in the microsecond range, the current efficiency was found to increase with decreasing pulse period because the adatoms are directly incorporated into steps and kink sites, and the disproportionation of cuprous ions or the dissolution of copper adatoms has less chance to occur.
High frequency PC and PR can improve the deposition uniformity in PTH. In an additive-free electrolyte, the deposition uniformity in PTH with high frequency PC and PR at 20 mA/cm2 average current density is better than that with low frequency PC and PR. Based on impedance analysis, plating at low frequency is controlled by the diffusion of cuprous or cupric ion while plating at high frequency is controlled by charge transfer. Changing the rate-determining step from diffusion control to charge transfer control results in an improved metal distribution. In the presence of additives (PEG+MPS+Cl), the uniformity improves with DC at 20 or 10mA/cm2. The trend in the baths with additives using PC and PR at high and low frequency is similar to that in the bath without additives. However, the improvement by high frequency PC and PR is not significant since the plating is under adsorption control.
The resistivity of copper deposit decreases with increasing PC and PR frequency in the baths with and without additives. The deposit becomes smoother with larger grain size as the frequency increases. Since overpotential decreases with increasing pulse frequency, it results in lower resistivity. In addition, the increase in the fraction of (200) at high frequency also reduces the resistivity. In the presence of additives, the copper resistivity of a bath with additives is generally lower than that without additives. A larger grain size can be obtained in the presence of additives because the additives tend to decrease overpotential, which naturally lead to lower resistivity.
Chapter 1
[1] E. Gute□rrez Jr., “Recent Advances in Pulse Power Supply Technology and Plat-ing Capability”, in AESF 5th International Pulse Plating Symposium, Chicago, AESF Society, Orlando, FL (2000).
[2] A. J. Bard and L. R. Faulkner, Electrochemical Methods, p.252, John Wiley & Sons, NY (1980).
[3] D. Landolt, “Mass Transfer in Pulse Plating”, in Theory and Practice of Pulse Plating, J. Cl. Puippe and F. Leaman, Editor, p.55, AESF Society, Orlando, FL (1986).
[4] T. R. Rosebrugh and W. L. Miller, “Mathematical Theory of the Changes of Concentration at the Electrode, Brought about by Diffusion and by Chemical Reaction”, J. Phys. Chemistry, 14, 816 (1910).
[5] Y. G. Siver, “Non-Stationary Electrode Process in Stirred Media. II. Voltammetry at Constant Current Density”, Russian Journal of Physical Chemistry, 34, 273 (1960).
[6] H. Y. Cheh, “Electrodeposition of Gold by Pulsed Current”, J. Electrochem. Soc., 118, 1132 (1971).
[7] K. Viswanathan, M. A. F., and H. Y. Cheh, “The Application of Pulsed Current Electrolysis to a Rotating-Disk Electrode System”, J. Electrochem. Soc., 125, 1772 (1978).
[8] K. Viswanathan and H. Y. Cheh, “Mass Transfer Aspects of Electrolysis by Peri-odic Currents”, J. Electrochem. Soc., 126, 398 (1979).
[9] D-T. Chin, “Mass Transfer and Current-Potential Relation in Pulse Electrolysis”, J. Electrochem. Soc., 135, 1657 (1983).
[10] S. Venkatesh, M. Meyyappan, and D. T. Chin, “Mathematical Modeling of Alternation Current Modulation of a Copper Rotating Disk Electrode in an Acid Sulfate Solution”, J. Colloid and Interface Science, 85, 216 (1982).
[11] N. Ibl, “Some Theoretical Aspects of Pulse Electrolysis”, Surface Technol., 10, 81 (1980).
[12] N. Ibl, J. Cl. Puippe, and H. Angerer, “Electrocrystallization in Pulse Electroly-sis”, Surface Technol., 6, 287 (1978).
[13] M. Datta, and D. Landolt, “Experimental Investigation of Transport in Pulse Plating”, Surface Technol., 25, 97-110 (1985).
[14] K. K. Poon and D. J. Williams, “Modeling of Acid Copper Electroplating: A Re-view”, J. Electronics Manufacturing, 8, 15 (1998).
[15] P. F. Mentone, “Pulse Plating Theory from a Users Perspective”, in AESF 5th In-ternational Pulse Plating Symposium, Chicago, AESF Society, Orlando, FL (2000).
[16] J. S. Newman, Electrochemical Systems, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ (1991).
[17] D. –T. Chin and D. Balamurugan, “An Experimental Study of Metal Distribution in Pulse Plating”, Electrochimica Acta, 37, 1927 (1992).
[18] O. Dossenbach, “Current Distribution in Pulse Plating”, in Theory and Practice of Pulse Plating, J. Cl. Puippe and F. Leaman, Editor, p73, AESF Society, Or-lando, FL (1986).
[19] H. H. Wan and H. Y. Cheh, “The Current Distribution on a Rotating Disk Elec-trode in Galvanostatic Pulsed Electrolysis”, J. Electrochem. Soc., 135, 643 (1988).
[20] K. Nargi-Toth, “High-Density PCBs: A Look at the Options and the Benefits These Products Afford”, Printed Circuit Fabrication, 22, 32 (1999).
[21] E. J. Taylor, J. J. Sun, B. Hammack, C. Davidson and M. E. Inman, “Electrically Mediated Plating of Semiconductor Substrates, Chip Scale Packages and High-Density Interconnect PWBs”, Plating Surf. Finish., 89 (5), 88 (2002).
[22] E. F. Duffek, in Printed Circuits Handbook, 4th ed., C. F. Coombs, Editor, p.19.1, McGRAW-HILL, NY (1995).
[23] G. Holmbom and B. E. Jacobsson, “Through-Hole Plating of Cu by Modulated Current Deposition”, Surf. Coat. Technol., 35, 333 (1988).
[24] E. J. Taylor, J. J. Sun and M. E. Inman, “Charge Modulated Electrochemical Deposition of Copper for Electronic Interconnect Applications”, Plating Surf. Finish., 87 (12), 68 (2000).
[25] G.. Milad and M. Lefebre, “Is Periodic Pulse Reverse the Right Copper Plating for Your PCB Manufacturing”, in AESF 5th International Pulse Plating Sympo-sium, Chicago, AESF Society, Orlando, FL (2000).
[26] M. Ward, D. R. Gabe and J. N. Crosby, “Pulse Plating of Copper for PCBs: Ef-fects of Agitation with Pulsing”, in AESF 5th International Pulse Plating Sympo-sium, Chicago, AESF Society, Orlando, FL (2000).
[27] A. M. Pesco and H. Y. Cheh, “The Current Distribution within Plated Through-Holes II. The Effect of Periodic Electrolysis”, J. Electrochem. Soc., 136, 408 (1989).
[28] H. H. Wan and R. Y. Chang and W. L. Yang, “Current Distribution in a Jet Through-Hole System during Periodic Electrolysis”, J. Electrochem. Soc., 140, 1380 (1993).
[29] R. J. Contolini, S. T. Mayer, R. T. Graff, L. Tarte and A. F. Bernhardt, “Electro-chemical Planarization of ULSI Copper”, Solid State Technol., 40 (6), 155 (1997).
[30] V. Dubin, C. Ting and R. W. Cheung, “Pulse Electroplating Copper or Copper Alloys”, U.S. Patent No. 5,972,192 (1999).
[31] Y. Morand, “Copper Metallization for Advanced IC: Requirements and Techno-logical Solution”, Microelectron. Eng., 50, 391 (2000).
[32] R. J. Contolini, A. F. Bernhardt and S. T. Mayer, “Electrochemical Planarization for Multilevel Metallization”, J. Electrochem. Soc., 141, 2503 (1994).
[33] R. J. Contolini, L. Tarte, R. T. Graff and L. B. Evans, “Copper Electroplating Process for Sub-Half-Micron ULSI Structures”, VMIC Conference, June 10-12, 27 (1995).
[34] V. M. Dubin, C. H. Ting, and R. Cheung, “Electro-Chemical Deposition of Cop-per for ULSI Metallization”, VMIC Conference, June 10-12, 69 (1997).
[35] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans and H. Deligianni, “Dam-ascene Copper Electroplating for Chip Interconnections”, IBM J. Res. Develop., 42, 567 (1998).
[36] C. Lingk and M. E. Gross, “Recrystallization Kinetics of Electroplated Cu in Damascene Trenches at Room Temperature”, J. Appl. Phys., 84, 5547-5553 (1998).
[37] Krishnamoorthy, C. Y. Lee, D. J. Duquette, and S. P. Murarka, “Pulsed Electro-deposition of Copper Metallization from an Alkaline Bath”, in Electrochemical Processing in ULSI Fabrication I and Interconnect and Contact Metallization: Materials, Processes, and Reliability, P. C. Andrricacos, J. O. Dukovic, G. S. Mathad, G. M. Oleszek, H. S. Rathore, and C. R. Simpson, Editors, pp. 185-194, The Electrochemical Society, Pennington, New Jersey (1999).
[38] J. M. Quemper, E. D. Gergam, N. F. Rodriquez, J. P. Gilles, J. P. Grandchamp, and A. Bosseboeuf, “Effects of Direct and Pulse Current on Copper Electrode-position through Photoresist Molds”, J. Micromech. Microeng., 10, 116-119 (2000).
[39] C. H. Seah, S. Mridha and L. H. Chan, “DC/Pulse Plating of Copper for Trench/Via Filling”, J. Mater. Process. Technol., 114, 233 (2001).
[40] A. C. West, C. C. Cheng, B. C. Baker, “Pulse Reverse Copper Electrodeposition in High Aspect Ratio Trenches and Vias”, J. Electrochem. Soc., 145, 3070 (1998).
[41] S. Goldbach, W. Messing, T. Daenen, F. Lapicque, “Coupled Effects of Chloride Ions and Branch Chained Polypropylene Ether LP-1□ on the Electrochemical Deposition of Copper from Sulfate Solutions”, Electrochimica Acta, 44, 323 (1998).
[42] D. Varadarajan, C. Y. Lee, A. Krishnamoorthy, D. J. Duquette and W. N. Gill, “A Tertiary Current Distribution Model for the Pulse Plating of Copper into High Aspect Ratio Sub-0.25 □m Trenches”, J. Electrochem. Soc., 147, 3382 (2000).
[43] E. K. Yung and L. T. Romankiw, “Plating of Copper into Through-Holes and Vias”, J. Electrochem. Soc., 136, 206 (1989).
[44] R. D. Mikkola, Q. –T. Jiang and B. Carpenter, “Copper Electroplating for Ad-vanced Interconnect Technology, Plating Surf. Finish., 87 (3), 81 (2000).
[45] J. Reid, S. Mayer, E. Broadbent, E. Klawuhn, and K. Ashtiani, “Factors Influ-encing Damascene Feature Fill Using Copper PVD and Electroplating”, Solid State Technology, 43 (7), 86 (2000).
[46] D. Roha and U. Landau, “Mass Transport of Leveling Agents in Plating: Steady-State Model for Blocking Additives”, J. Electrochem. Soc., 137, 824 (1990).
[47] K. G. Jordan and C. W. Tobias, “The Effect of Inhibitor Transport on Leveling in Electrodeposition”, J. Electrochem. Soc., 138, 1251 (1991).
[48] C. Madore, M. Matlosz and D. Landolt, “Blocking Inhibitors in Cathodic Level-ing I. Theoretical Analysis”, J. Electrochem. Soc., 143, 3927 (1996).
[49] C. Madore and D. Landolt, “Blocking Inhibitors in Cathodic Leveling II. Ex-perimental Investigation”, J. Electrochem. Soc., 143, 3936 (1996).
[50] D. A. Hazlebeck and J. B. Talbot, “Modeling of the Electroplating of a Through-Hole Considering Additive Effects and Convection”, J. Electrochem. Soc., 138, 1985 (1991).
[51] A. C. West, “Theory of Filling of High-Aspect Ratio Trenches and Vias in Pres-ence of Additives”, J. Electrochem. Soc., 147, 227 (2000).
[52] M. Georgiadou, D. Veyret, R. L. Sani and A. C. Alkire, “Simulation of Shape Evolution during Electrodeposition of Copper in the Presence of Additive”, J. Electrochem. Soc., 148, C54 (2001).
[53] T. P. Moffat, D. Wheeler, W. H. Huber and D. Josell, “Superconformal Electro-deposition of Copper”, Electrochemical and Solid-State Letters, 4, C26 (2001).
[54] P. Taephaisitphongse, Y. Cao and A. C. West, “Electrochemical and Fill Studies of a Multicomponent Additive Package for Copper Deposition”, J. Electrochem. Soc., 148, C492 (2001).
[55] Y. Cao, P. Taephaisitphongse, R. Chalupa and A. C. West, “Three-Additive Model of Superfilling of Copper”, J. Electrochem. Soc., 148, C466 (2001).
[56] K. –M. Yin, “A Theoretical Analysis of the Effect of Inert Blocking Agent on the Galvanostatic Pulse Plating”, J. Electrochem. Soc., 145, 3851 (1998).
[57] P. H. Rieger, Electrochemistry, 2nd ed., p.59, Chapman & Hall, One Penn Plaza, New York (1994).
[58] M. Paunovic and M. Schlesinger, Fundamentals of Electrochemical Deposition, John Wiley & Sons, New York (1998).
[59] J. Cl. Puippe and N. Ibl, “Influence of Charge and Discharge of Electric Double Layer in Pulse Plating”, J. Appl. Electrochem., 10, 775 (1980).
[60] R. Caba□n and T. W. Chapman, “Statistical Analysis of Electrode Kinetics Meas-urements-Copper Deposition from CuSO4-H2SO4 Solutions”, J. Electrochem. Soc., 124, 1371 (1977).
[61] D. R. Turner and G. R. Johnson, “The Effect of Some Addition Agents on the Kinetics of Copper Electrodeposition from a Sulfate Solution”, J. Electrochem. Soc., 109, 798 (1962).
[62] S. S. Kruglikov, N. T. Kudriavtsev, G. F. Vorobiova and A. Y. Antonov, “On the Mechanism of Leveling by Addition Agents in Electrodeposition of Metals”, Electrochimica Acta, 10, 253 (1965).
[63] S. S. Kruglikov, N. T. Kudryavtsev and R. P. Sobolev, “The Effect of Some Pri-mary and Secondary Brighteners on the Double Layer Capacitance in Nickel Electrodeposition”, Electrochimica Acta, 12, 1263 (1967).
[64] Z. D. Stankovic□ and M. Vukovic□, “The Influence of Thiourea on Kinetic Pa-rameters on the Cathodic and Anodic Reaction at Different Metal in H2SO4 Solu-tion”, Electrochimica Acta, 41, 2529 (1996).
[65] S. A. Campbell, E. E. Farndon, F. C. Walsh and M. Kalaji, “Electrochemical and Spectroscopic Studies of the Influence of Thiourea on Copper Deposition from Acid Sulphate Solution”, Trans. IMF, 75 (1), 10 (1997).
[66] T. Pearson and J. K. Dennis, “The Effect of Pulsed Reverse Current on the Po-larization Behavior of Acid copper Plating Solutions Containing Organic Addi-tives”, J. Appl. Electrochem., 20, 196 (1990).
[67] J. J. Kelly and A. C. West, “Copper Deposition in the Presence of Polyethylene Glycol - I. Quartz Crystal Microbalance Study”, J. Electrochem. Soc., 145, 3472 (1998).
[68] J. J. Kelly and A. C. West, “Copper Deposition in the Presence of Polyethylene Glycol - II. Electrochemical Impedance Spectroscopy” J. Electrochem. Soc., 145, 3477 (1998).
[69] T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Stanishevsky, D. R. Kelly, G. R. Stafford and D. Josell, “Superconformal Electrodeposition of Copper in 500-90 nm Features”, J. Electrochem. Soc., 147, 4524 (2000).
[70] A. C. West, “Theory of Filling of High-Aspect Ratio Trenches and Vias in Pres-ence of Additives”, J. Electrochem. Soc., 147, 227 (2000).
[71] E. Mattsson and J. O’M. Bockris, “Galvanostatic Studies of the Kinetics of Deposition and Dissolution in the Copper + Copper Sulphate System”, Trans. Faraday Soc., 55, 1586 (1959).
[72] J. O’M. Bockris and M. Enyo, “Mechanism of Electrodeposition and Dissolution Processes of Copper in Aqueous Solution”, Trans. Faraday Soc., 58, 1187 (1959).
[73] J. O’M. Bockris and H. Kita, “The Deposition of Charge Transfer and Surface Diffusion Rates on the Structure and Stability of an Electrode Surface: Copper”, J. Electrochem. Soc., 109, 929 (1962).
[74] O. R. Brown and H. R. Thirsk, “The Rate-Determining Step in the Electrode-position of Copper on Copper from Aqueous Cupric Sulphate Solution”, Elec-trochimica Acta, 10, 383 (1965).
[75] C. C. Wan, H. Y. Chen, and H. B. Linford, “Application of Pulsed Plating Tech-niques To Metal Deposition Part II-Pulsed Plating of Copper”, Plat. Surf. Fin., 63 (5), 66 (1977).
[76] C. J. Chen and C. C. Wan, “A Study of Current Efficiency Decrease Accompa-nying Short Pulse Time for Pulse Plating”, J. Electrochem. Soc., 136, 2850 (1989).
[77] E. Budevski, G. Staikov and W. J. Lorenz, Electrochemical Phase Formation and Growth: An Introduction to the Initial Stages of Metal Deposition, VCH, New York (1996).
[78] P. Kristof and M. Pritzker, “Improved Copper Plating Through the Use of Cur-rent Pulsing & Ultrasonic Agitation”, Plating Surf. Finish., 85 (11), 237 (1998).
Chapter 2
[1] V. Dubin, C. Ting and R. W. Cheung, “Pulse Electroplating Copper or Copper Alloys”, U.S. Patent No. 5,972,192 (1999).
[2] T. N. Theis, “The Future of Interconnection Technology”, IBM J. Res. Develop., 44, 379 (2000).
[3] E. J. Taylor, J. J. Sun and M. E. Inman, “Charge Modulated Electrochemical Deposition of Copper for Electronic Interconnect Applications”, Plating Surf. Finish., 87 (12), 68 (2000).
[4] A. C. West, C. C. Cheng, and B. C. Baker, “Pulse Reverse Copper Electrodeposi-tion in High Aspect Ratio Trenches and Vias”, J. Electrochem. Soc., 145, 3070 (1998).
[5] S. Goldbach, W. Messing, T. Daenen, and F. Lapicque, “Coupled Effects of Chloride Ions and Branch Chained Polypropylene Ether LP-1□ on the Electro-chemical Deposition of Copper from Sulfate Solutions”, Electrochimica Acta, 44, 323 (1998).
[6] R. D. Mikkola, Q. –T. Jiang and B. Carpenter, “Copper Electroplating for Ad-vanced Interconnect Technology, Plating Surf. Finish., 87 (3), 81 (2000).
[7] J. Reid, S. Mayer, E. Broadbent, E. Klawuhn, and K. Ashtiani, “Factors Influ-encing Damascene Feature Fill Using Copper PVD and Electroplating”, Solid State Technol., 43, 86 (2000).
[8] H. Y. Cheh, “Electrodeposition of Gold by Pulsed Current”, J. Electrochem. Soc., 118, 1132 (1971).
[9] K. Viswanathan, M. A. F. Epstein, and H. Y. Cheh, “The Application of Pulsed Current Electrolysis to a Rotating-Disk Electrode System”, J. Electrochem. Soc., 125, 1772 (1978).
[10] K. Viswanathan and H. Y. Cheh, “Mass Transfer Aspects of Electrolysis by Peri-odic Currents”, J. Electrochem. Soc., 126, 398 (1979).
[11] D-T. Chin, “Mass Transfer and Current-Potential Relation in Pulse Electrolysis”, J. Electrochem. Soc., 135, 1657 (1983).
[12] S. Venkatesh, M. Meyyappan, and D. T. Chin, “Mathematical Modeling of Al-ternation Current Modulation of a Copper Rotating Disk Electrode in an Acid Sulfate Solution”, J. Colloid Interface Sci., 85, 216 (1982).
[13] K. –M. Yin, and R. E. White, “A Mathematical Model of Pulse Plating on a Ro-tating Disk Electrode”, AIChE J., 36, 187 (1990).
[14] H. Schultz and M. Pritzker, “Modeling the Galvanostatic Pulse and Pulse Re-verse Plating of Nickel-Iron Alloys on a Rotating Disk Electrode”, J. Electro-chem. Soc., 145, 2033 (1998).
[15] K. –M. Yin, “A Theoretical Analysis of the Effect of Inert Blocking Agent on the Galvanostatic Pulse Plating”, J. Electrochem. Soc., 145, 3851 (1998).
[16] N. Ibl, “Some Theoretical Aspects of Pulse Electrolysis”, Surface Technol., 10, 81 (1980).
[17] J. Cl. Puippe and N. Ibl, “Influence of Charge and Discharge of Electric Double Layer in Pulse Plating”, J. Appl. Electrochem., 10, 775 (1980).
[18] K. G. Jordan and C. W. Tobias, “The Effect of Inhibitor Transport on Leveling in Electrodeposition”, J. Electrochem. Soc., 138, 1251 (1991).
[19] J. S. Newman, Electrochemical Systems, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ (1991).
[20] L. Oniciu and L. Muresan, “Some Fundamental-Aspects of Leveling and Brightening in Metal Electrodeposition” J. Appl. Electrochem., 21, 565 (1991).
[21] Z. D. Stanković and M. Vukovic, “The Influence of Thiourea on Kinetic Pa-rameters on the Cathodic and Anodic Reaction at Different Metals in H2SO4 So-lution”, Electrochimica Acta, 41, 2529 (1996).
[22] S. A. Campbell, E. E. Farndon, F. C. Walsh and M. Kalaji, “Electrochemical and Spectroscopic Studies of the Influence of Thiourea on Copper Deposition from Acid Sulphate Solution“, Trans. Inst. Met. Finish., 75, 10 (1997).
[23] C. Madore, M. Matlosz, and D. Landolt, “Blocking Inhibitors in Cathodic Lev-eling I. Theoretical Analysis”, J. Electochem. Soc., 143, 3927 (1996).
[24] C. Madore and D. Landolt, “Blocking Inhibitors in Cathodic Leveling II. Ex-perimental Investigation”, J. Electochem. Soc., 143, 3936 (1996).
[25] J. W. E. Chern and H. Y. Cheh, “Modeling of Plated Through-Hole Processes II. Effect of Leveling Agents on Current Distribution”, J. Electochem. Soc., 143, 3144 (1996).
[26] C. C. Cheng and A. C. West, “Nickel Deposition in the Presence of Coumarin- An Electrochemical Impedance Spectroscopy Study”, J. Electochem. Soc., 144, 3050 (1997).
[27] C. C. Cheng and A. C. West, “Flow Modulation as a Means of Studying Leveling Agents”, J. Electochem. Soc., 145, 560 (1998).
[28] J. J. Kelly and A. C. West, “Copper Deposition in the Presence of Polyethylene Glycol - II. Electrochemical Impedance Spectroscopy”, J. Electochem. Soc., 145, 3477 (1998).
[29] D. Roha and U. Landau, “Mass Transport of Leveling Agents in Plating: Steady-State Model for Blocking Additives”, J. Electochem. Soc., 137, 824 (1990).
[30] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York (1960).
[31] J. C. Farmer, “Underpotential Deposition of Copper on Gold and the Effects of Thiourea Studied by AC Impedance”, J. Electochem. Soc., 132, 2640 (1985).
[32] M. N. Őzisik, Finite Difference Methods in Heat Transfer, CRC, Florida (1994).
Chapter 3
[1] J. M. Quemper, E. D. Gergam, N. F. Rodriquez, J. P. Gilles, J. P. Grandchamp and A. Bosseboeuf, “Effects of Direct and Pulse Current on Copper Electrode-position through Photoresist Molds”, J. Micromech. Microeng., 10, 116 (2000).
[2] N. S. Qu, K. C. Chan, D. Zhu, “Surface Roughening in Pulse Current and Pulse Reverse Current Electroforming of Nickel”, Surf. Coat. Technol., 91, 220 (1997).
[3] J. J. Kelly, P. E. Bradley, and D. Landolt, “Additive Effects During Pulsed Deposition of Cu-Co Nanostructures”, J. Electrochem. Soc., 147, 2975 (2000).
[4] E. T. Taylor, J. J Sun and M. E. Inman, “Charge Modulated Electrochemical Deposition of Copper for Electronic Interconnect Applications”, Plating Surf. Finish, 87 (12), 68 (2000).
[5] C. Lingk and M. E. Gross, C. Lingk and M. E. Gross, “Recrystallization Kinetics of Electroplated Cu in Damascene Trenches at Room Temperature”, J. Appl. Phys., 84, 5547-5553 (1998).
[6] H. Y. Cheh, “Electrodeposition of Gold by Pulsed Current”, J. Electrochem. Soc., 118, 1132 (1971).
[7] K. Viswanathan and H. Y. Cheh, “Mass Transfer Aspects of Electrolysis by Peri-odic Currents”, J. Electrochem. Soc., 126, 398 (1979).
[8] D-T. Chin, “Mass Transfer and Current-Potential Relation in Pulse Electrolysis”, J. Electrochem. Soc., 135, 1657 (1983).
[9] A. C. West, C. C. Cheng, and B. C. Baker, “Pulse Reverse Copper Electrodeposi-tion in High Aspect Ratio Trenches and Vias”, J. Electrochem. Soc., 145, 3070 (1998).
[10] C. C. Wan, H. Y. Cheh, and H. B. Linford, “Application of Pulsed Plating Tech-niques To Metal Deposition Part II-Pulsed Plating of Copper”, Plating Surf. Finish, 63 (5), 66 (1977).
[11] C. C. Wan, H. Y. Cheh, and H. B. Linford, “A Study of Electrochemical Kinetics of Copper Deposition under Pulsed Current Conditions”, J. Appl. Electrochem., 9, 29 (1979).
[12] C. J. Chen and C. C. Wan, “A Study of Current Efficiency Decrease Accompa-nying Short Pulse Time for Pulse Plating”, J. Electrochem. Soc., 136, 2850 (1989).
[13] T. A. Eckler, B. A. Manty and P. L. Mcdaniel, “Pulse Plating of Chro-mium-Molybdenum Coatings”, Plating Surf. Finish, 66 (9), 60 (1980).
[14] S. Yoshimura, S. Chida and E. Sato, “Pulsed Current Electrodeposition of Palla-dium”, Met. Finish, 84 (10), 66 (1986).
[15] K. Hosokawa, H. Angerer, J. Cl. Puippe and N. Ibl, “Pulse-Plating Depositions of Gold and Rhenium”, Plating Surf. Finish, 66 (10), 52 (1980).
[16] W. S. Miu and Y. S. Fung, “Pulsed Current Electrodeposition of Rhodium”, Plating Surf. Finish, 73 (3), 66 (1986).
[17] J. Cl. Puippe and N. Ibl, “Influence of Charge and Discharge of Electric Double Layer in Pulse Plating”, J. Appl. Electrochem., 10, 775 (1980).
[18] W. C. Tsai, C. C. Wan and Y. Y. Wang, “Pulsed Current and Potential Response of Acid Copper System with Additives and the Effect of Double Layer”, J. Elec-trochem. Soc., 149, C229 (2002).
[19] E. Mattsson and J. O’M. Bockris, “Galvnostatic Studies of the Kinetics of Depo-sition and Dissolution in the Copper+Copper Sulphate System”, Trans. Farad. Soc., 55, 1586 (1959).
[20] J. O’M. Bockris and H. Kita, “The Dependence of Charge Transfer and Surface Diffusion Rates on the Structure and Stability of an Electrode Surface: Copper”, J. Electrochem. Soc., 109, 928 (1962).
[21] O. R. Brown and H. R. Thirsk, “The Rate-Determining Step in the Eelectrode-position of Copper from Aqueous Cupric Sulphate Solution”, Electrochimica Acta, 10, 383 (1965).
[22] G. W. Tindall and S. Bruckenstein, “A Ring-Disk Electrode Study of the Elec-trochemical Reduction of Copper (II) in 0.2M Sulfuric Acid on Platinum”, Anal. Chem., 40, 1051 (1968).
[23] W. J. Lorenz, H. D. Hermann, N. Wüthrich, and F. Hilbert, “The Formation of Monolayer Metal Films on Electrodes”, J. Electrochem. Soc., 121, 1167 (1974).
[24] J. R. White, “Reverse Pulse Plating of Copper from Acid Electrolyte: A Rotating Ring Disc Electrode Study”, J. Appl. Electrochem., 17, 977 (1987).
[25] E. Gileadi and V. Tsionsky, “Studies of Electroplating Using an EQCM - I. Cop-per and Silver on Gold”, J. Electrochem. Soc., 147, 567 (2000).
[26] J. D. Reid and A. P. David, “Impedance Behavior of a Sulfuric Acid-Cupric Sul-fate/Copper Cathode Interface”, J. Electrochem. Soc., 134 (1987) 1389.
[27] M. Paunovic and M. Schlesinger, Fundamentals of Electrochemical Deposition, p.103, John Wiley & Sons, New York (1998).
[28] J. J. Kelly and A. C. West, “Copper Deposition in the Presence of Polyethylene Glycol - II. Electrochemical Impedance Spectroscopy” J. Electrochem. Soc., 145, 3477 (1998).
[29] J. O’M. Bockris and B. E. Conway, “Determination of the Faradaic Impedance at Solid Electrodes and the Electrodeposition of Copper”, J. Chem. Phys., 28, 707 (1958).
[30] N. Tantavichet and M. D. Pritzker, “Low and High Frequency Pulse Current Plating of Copper onto a Rotating Disk Electrode”, J. Electrochem. Soc., 149, C289 (2002).
Chapter 4
[1] K. Nargi-Toth, “High-Density PCBs: A Look at the Options and the Benefits These Products Afford”, Printed Circuit Fabrication, 22, 32 (1999).
[2] T. Kobayashi, J. Kawasaki, K. Mihara and H. Honma, “Via-Filling Using Electroplating for Build-Up PCBs”, Electrochimica Acta, 47, 85 (2001).
[3] G. Holmbom and B. E. Jacobsson, “Through-Hole Plating of Cu by Modulated Current Deposition”, Surf. Coat. Technol., 35, 333 (1988).
[4] M. R. Kalantary and D. R. Gabe, “Unipolar and Bipolar Pulsed Current Electro-deposition for PCB Production”, J. Appl. Electrochem., 23, 231 (1993).
[5] E. J. Taylor, J. J. Sun and M. E. Inman, “Charge Modulated Electrochemical Deposition of Copper for Electronic Interconnect Applications”, Plating Surf. Finish., 87 (12), 68 (2000).
[6] T. Pearson and J. K. Dennis, “The Effect of Pulsed Reverse Current on the Po-larization Behavior of Acid copper Plating Solutions Containing Organic Addi-tives”, J. Appl. Electrochem., 20, 196 (1990).
[7] R. D. Mikkola, Q. –T. Jiang and B. Carpenter, “Copper Electroplating for Ad-vanced Interconnect Technology, Plating Surf. Finish., 87 (3), 81 (2000).
[8] N. Ibl, “Some Theoretical Aspects of Pulse Electrolysis”, Surf. Technol., 10, 81 (1980).
[9] J. Cl. Puippe and N. Ibl, “Influence of Charge and Discharge of Electric Double Layer in Pulse Plating”, J. Appl. Electrochem., 10, 775 (1980).
[10] W. C. Tsai, C. C. Wan and Y. Y. Wang, “Mechanism of Copper Electrodeposition by Pulse Current and Its Relation to Current Efficiency”, revised by J. Appl. Electrochem.
[11] L. Mirkova and St. Rashkov, “Anodic Behavior of Copper during Electrorefining Using a Rotating Ring-Disc Electrode”, J. Appl. Electrochem., 24, 420 (1994).
[12] J. J. Kelly and A. C. West, “Copper Deposition in the Presence of Polyethylene Glycol - I. Quartz Crystal Microbalance Study”, J. Electrochem. Soc., 145, 3472 (1998).
[13] T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Stanishevsky, D. R. Kelly, G. R. Stafford and D. Josell, “Superconformal Electrodeposition of Copper in 500-90 nm Features”, J. Electrochem. Soc., 147, 4524 (2000).
[14] J. D. Reid and A. P. David, “Effects of Polyethylene Glycol on the Electro-chemical Characteristics of Copper Cathodes in Acid Copper Medium”, Plating Surf. Finish., 74 (1), 66 (1987).
[15] J. D. Reid and A. P. David, “Impedance Behavior of a Sulfuric Acid-Cupric Sul-fate/Copper Cathode Interface”, J. Electrochem. Soc., 134, 1389 (1987).
[16] S. Goldbach, W. Messing, T. Daenen and F. Lapicque, “Coupled Effects of Chlo-ride Ions and Branch Chained Polypropylene Ether LP-1□ on the Electrochemi-cal Deposition of Copper from Sulfate Solutions”, Electrochimica Acta, 44, 323 (1998).
[17] I. R. Burrows, J. A. Harrison and J. Thompson, “The Deposition of Copper”, Electroanal. Chem. Interfacial Electochem., 58, 241 (1975).
[18] J. Cl. Puippe and F. Leaman, Theory and Practice of Pulse Plating, AESF Soci-ety, Orlando, Florida (1986).
[19] A. C. West, C. C. Cheng and B. C. Baker, “Pulse Reverse Copper Electrodeposi-tion in High Aspect Ratio Trenches and Vias”, J. Electrochem. Soc., 145, 3070 (1998)
[20] E. Mattsson and J. O’M. Bockris, “Galvnostatic Studies of the Kinetics of Depo-sition and Dissolution in the Copper+Copper Sulphate System”,Trans. Faraday Soc., 55, 1586 (1959).
[21] W. C. Tsai, C. C. Wan and Y. Y. Wang, “Pulsed Current and Potential Response of Acid Copper System with Additives and the Effect of Double Layer”, J. Elec-trochem. Soc., 149, C229 (2002).
Chapter 5
[1] T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Stanishevsky, D. R. Kelly, G. R. Stafford and D. Josell, “Superconformal Electrodeposition of Copper in 500-90 nm Features”, J. Electrochem. Soc., 147, 4524 (2000).
[2] S. C. Chang, J. M. Shieh, K. C. Lin, B. T. Dai, T. C. Wang, C. F. Chen, M. S. Feng, Y. H. Li and C. P. Lu, “Investigations of Effects of Bias Polarization and Chemical Parameters on Morphology and Filling Capability of 130 nm Damascene Electroplated Copper”, J. Vac. Sci. Technol. B, 19, 767 (2001).
[3] P. Taephaisitphongse, Y. Cao and A. C. West, “Electrochemical and Fill Studies of a Multicomponent Additive Package for Copper Deposition”, J. Electrochem. Soc., 148, C492 (2001).
[4] A. C. West, C. C. Cheng, B. C. Baker, “Pulse Reverse Copper Electrodeposition in High Aspect Ratio Trenches and Vias”, J. Electrochem. Soc., 145, 3070 (1998).
[5] D. Varadarajan, C. Y. Lee, A. Krishnamoorthy, D. J. Duquette and W. N. Gill, “A Tertiary Current Distribution Model for the Pulse Plating of Copper into High Aspect Ratio Sub-0.25 □m Trenches”, J. Electrochem. Soc., 147, 3382 (2000).
[6] M. Georgiadou and D. Veyret, “Modeling of Transient Electrochemical Systems Involving Moving Boundaries: Parametric Study of Pulse and Pulse-Reverse Plating of Copper in Trenches”, J. Electrochem. Soc., 149, C324 (2002).
[7] W. C. Gau, T. C. Chang, Y. S. Lin, J. C. Hu, L. J. Chen, C. Y. Chang and C. L. Cheng, “Copper Electroplating for Future Ultralarge Scale Integration Interconnection”, J. Vac. Sci. Technol. B, 18, 656 (2000).
[8] V. S. Donepudi, R. Venkatachalapathy, P. O. Ozemoyah C. S. Johnson and J. Prakash, “Electrodeposition of Copper from Sulfate Electrolytes: Effects of Thiourea on Resistivity and Electrodeposition Mechanism of Copper”, Electrochem. Solid-State Lett., 4, C13 (2001).
[9] S. C. Chang, J. M. Shieh, B. T. Dai and M. S. Feng, “Reduction of Resistivity of Electroplated Copper by Rapid Thermal Annealing”, Electrochemical and Solid-State Letters, 5, C67 (2002).
[10] C. F. Chen and K. C. Lin, “Effect of Pulse Frequency on Leveling and Resistivity of Copper Coatings”, Jpn. J. Appl. Phys., 41, 2881 (2002).
[11] P. Kristof and M. Pritzker, “Improved Copper Plating Through the Use of Current Pulsing & Ultrasonic Agitation”, Plating Surf. Fin., 85 (11), 237 (1998).
[12] W. C. Tsai, C. C. Wan and Y. Y. Wang, “Mechanism of Copper Electrodeposition by Pulse Current and Its Relation to Current Efficiency”, accepted by J. Appl. Electrochem.
[13] W. C. Tsai, C. C. Wan and Y. Y. Wang, “Effect of High and Low Frequency Pulse and Pulse-Reverse Plating on the Uniformity of Copper Deposition in PTH Process with and without Additives”, submitted to J. Electrochem. Soc.
[14] J. D. Plummer, M. D. Deal and P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling, Prentice Hall, New Jersey (2000).
[15] C. J. Chen and C. C. Wan, “A Study of Current Efficiency Decrease Accompanying Short Pulse Time for Pulse Plating”, J. Electrochem. Soc., 136, 2850 (1989).
[16] J. R. White, “Reverse Pulse Plating of Copper from Acid Electrolyte: A Rotation Ring Disc Electrode Study”, J. Appl. Electrochem., 17, 977 (1987).
[17] E. Budevski, G. Staikov and W. J. Lorenz, Electrochemical Phase Formation and Growth: An Introduction to the Initial Stages of Metal Deposition, VCH, New York (1996).
[18] T. Pearson and J. K. Dennis, “The Effect of Pulsed Reverse Current on the Polarization Behavior of Acid copper Plating Solutions Containing Organic Additives”, J. Appl. Electrochem., 20, 196 (1990).
[19] J. J. Kelly and A. C. West, “Copper Deposition in the Presence of Polyethylene Glycol - I. Quartz Crystal Microbalance Study”, J. Electrochem. Soc., 145, 3472 (1998).
[20] N. Ibl, “Some Theoretical Aspects of Pulse Electrolysis”, Surf. Technol., 10, 81 (1980).
[21] J. Cl. Puippe and N. Ibl, “Influence of Charge and Discharge of Electric Double Layer in Pulse Plating”, J. Appl. Electrochem., 10, 775 (1980).
[22] N. Tantavichet and M. D. Pritzker, “Low and High Frequency Pulse Current Plating of Copper onto a Rotating Disk Electrode”, J. Electrochem. Soc., 149, C289 (2002).
[23] B. K. Vainshtein, Modern Crystallography I. Symmetry of Crystals, Methods of Structural Crystallography, Springer-Verlag, Berlin (1981).