簡易檢索 / 詳目顯示

研究生: 蘇維德
Wei-Te Su
論文名稱: 綫型永磁同步馬達驅動系統之建構及其定位控制
DEVELOPMENT OF A LINEAR PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVE AND ITS POSITIONING CONTROL
指導教授: 廖聰明
Chang-Ming Liaw
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 161
中文關鍵詞: 綫型永磁同步馬達定位控制數位控制雙可調度控制強健控制模式跟隨控制參數鑑別大命令定位控制量化設計適應控制
外文關鍵詞: linear permanent magnet synchronous motor, positioning control, digital control, two-degree-of-freedom control, robust control, model following control, parameters identification, large command positioning control, quantitative design, adaptive control
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在建構一以DSP為主之綫型永磁同步馬達驅動系統及從事其數位定位控制。首先建立一綫型永磁同步馬達驅動之定位平台,以及一DSP數位控制環境以實現所開發之控制法則。在所建之驅動系統中,除了適當地設計電流調控PWM機構外,並以所提之弱磁強迫電流控制機構改善在暫態期之電流追蹤響應。
    在定位控制研究上,先由實測資料估出馬達驅動系統之動態模式,用以在正規情況下從事控制器之設計。接著,本文發展幾種量化設計方法,根據所估得之模式及所定之控制規格,系統化設計出所擬雙可調度控制器之參數。當系統參數及操作條件發生變化時,所定之控制要求將不再被滿足。本文提出一個以觀測器為主之強健控制機構及一內強健模式跟隨控制器以降低控制性能之劣化。除此之外,亦開發參數鑑別器,從估測之擾動信號或補償控制信號估出動態模式之參數變化量,用以線上調適雙可調度控制器之參數。而在從事大命令定位控制上,步階命令之幅度及斜坡命令之幅度與斜率亦係根據所估得參數定之,以充分利用變頻器和馬達之額定。藉由所提之控制技巧,可避免控制力之過度飽和及由非線性元件所引致之不穩定。而在此情況下,位置響應之定位時間仍可獲知。


    This dissertation is mainly concerned with the development of a DSP-based linear permanent magnet synchronous motor (LPMSM) drive and its digital positioning control. First, a LPMSM driven stage is established, and a DSP-based digital control environment is constructed for realizing all the developed control algorithms. In addition to the properly designed current-controlled PWM scheme in the established drive, a field-weakening forcing current control scheme is proposed to improve current tracking response during transient period.
    As to the positioning control studies, the dynamic model of the motor drive is first estimated from measurements. And it is employed for performing the controller design at nominal case. Moreover, the quantitative design approaches are developed to find the parameters of two-degree-of-freedom controller (2DOFC) based on the estimated model and the prescribed control requirements. As the system parameter and operating condition changes occur, the given control requirements will not be further satisfied. In this dissertation, an observer based robust control scheme and an internal robust model following controller are proposed to reduce the performance degradation. In addition, the parameter identifiers are devised to obtain the dynamic model parameter changes from the observed disturbance or the compensating control signals. The estimated parameters are then used for on-line adapting the parameters of the 2DOFC. In making large command positioning control, the amplitudes and/or ramping rate of step and ramp commands are determined according to the estimated parameters. The ratings of inverter and motor can be utilized more effectively. Excessive control saturation and instability caused by nonlinearities can be avoided. And moreover, the positioning response time is also predicable.

    ABSTRACT ................................................................................................……… i ACKNOWLEDGEMENTS .................................................................................... ii LIST OF CONTENTS ............................................................................................. iii LIST OF FIGURES ................................................................................................. vi LIST OF TABLES .................................................................................................. xi LIST OF SYMBOLS ……………………………………………………………... xii LIST OF ABBREVIATIONS …………………………………………..……….. xvii CHAPTER 1 INTRODUCTION ……..……………………………………... 1 1.1 Motivation ................................................................................... 1 1.2 Literature Survey ........................................................................ 3 1.3 Contributions of this Dissertation …............................................ 11 1.4 Organization of this Dissertation ................................................ 12 CHAPTER 2 AN EXPERIMENTAL DSP-BASED LINEAR PERMANENT- MAGNET MOTOR DRIVEN STAGE ……………………… 15 2.1 Introduction ................................................................................ 15 2.2 Motor Structure and Governing Equations ...………………… 15 2.2.1 Governing Equations in abc-Domain …………………... 16 2.2.2 Governing Equations in dq-Domain …………………… 19 2.3 Brushless DC Operation of LPMSM Drive …………………... 23 2.4 Electrical Capability of LPMSM Drives ………………............ 25 2.5 System Configuration of the Established LPMSM Drive .......... 31 2.5.1 Digital Signal Processor ………………………………… 31 2.5.2 Sensing Schemes and Hardware Realization ……………. 37 2.5.3 Control Software ………………………………………… 39 2.6 Dynamic Modeling and Parameter Estimation ………………… 42 2.6.1 Current Loop …………………………………………….. 42 2.6.2 Position/Velocity Loop ………………………………….. 48 2.7 Driving Performance Evaluation for the Established LPMSM Driven Stage …………………………………………………… 54 2.8 The Proposed Field-Weakening Forcing Current Control Scheme ………………………………………………………… 57 2.8.1 Field-Weakening Scheme ……………………………….. 57 2.8.2 Design of Command Feedforward and Feedback Controllers ……………………………………………….. 62 CHAPTER 3 QUANTITATIVE AND ROBUST POSITIONING CONTROL BASED ON PERFORMANCE TRANSFER FUNCTION ....... 67 3.1 Introduction ................................................................................. 67 3.2 Problem Statements …………………………...……………….. 67 3.3 Representation of Control Specifications ………..…………….. 68 3.3.1 Regulation Control Response ……………………………. 68 3.3.2 Tracking Control Response ……………………………… 73 3.3.3 The Generation of Response Transfer Function …………. 74 3.4 Digital 2DOF Position Control ………………………………... 75 3.4.1 Design Process of Controllers ..…………………………… 77 3.4.2 Results …………………………………………………… 80 3.5 Robust Position Control ………….……………………………. 85 CHAPTER 4 ADAPTIVE POSITIONING CONTROL BASED ON ADAPTED INVERSE MODEL AND ROBUST DISTURBANCE OBSERVER …………………………………........................... 93 4.1 Introduction ........................................................….................... 93 4.2 Problem Statements …………………………...……………….. 94 4.3 Design of the Constituted Controllers …………………………. 97 4.3.1 Tracking Control ………………………………………… 97 4.3.2 Regulation Control ………………………………………. 101 4.3.3 Results …………………………………………………… 103 4.4 Robust Disturbance Cancellation and Adaptive Feedforward Controls ………………………….…………………………….. 104 4.4.1 Robust Control and Identification Schemes ……………... 107 4.4.2 Adapted Command Feedforward Control Scheme ……… 111 4.4.3 Results …………………………………………………… 114 CHAPTER 5 ROBUST POSITION COMPROMISING CONTROL UNDER UNKNOWN MASS AND LARGE COMMAND CHANGE …. 122 5.1 Introduction ................................................................................. 122 5.2 Problem Statements ………………………...………………….. 122 5.3 Quantitative Design of 2DOF Position Control Scheme ……..... 126 5.4 The Proposed Robust 2DOF Position Control and Parameter Identification Schemes …………………………………………. 133 5.4.1 Robust Model Following Control (RMFC) Scheme ……... 133 5.4.2 The Proposed Parameter Identification Scheme …………. 133 5.5 Quantitative Positioning Control under Large Command and Unknown Mass …………………...……………………………. 138 5.5.1 Maximum Control Effort Estimation ……………………. 138 5.5.2 Ramp Command Generation ……………………………. 139 CHAPTER 6 CONCLUSIONS ......................................................................... 147 REFERENCES ........................................................................................................ 150 BIOGRAPHICAL NOTE ........................................................................................ 160

    A. Linear Motor Drives
    [1] I. Boldea and S. A. Nasar, Linear Electric Motors: Theory, Design, and Practical Applications, Prentice-Hall, New Jersey, 1987.
    [2] M. Watada, Y.Fukuya, D. Ebihara, T. Okada, and T. Taura, “Study on kinetic characteristics of cylindrical moving coil linear DC motor for a vibrator,” IEEE Trans. Magn., vol. 31, no. 6, pp. 3725-3727, 1995.
    [3] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electronic Machine and Drive Systems, 2nd edition, IEEE Press, New York, 2002.
    [4] J. S. Moghani and J. F. Eastham, “The dynamic response of a linear brushless DC motor,” Proc. of International Conf. On Power Electronics, Drives and Energy Systems for Industrial Growth, vol. 1, 1995, pp. 599-602.
    [5] Y. Dote and S. Kinoshita, Brushless Servomotors Fundamentals and Applications, Oxford Clarendon Press, New York, 1990.
    [6] H. Wakiwaka, H. Yajima, S. Senoh, H. Yamada, J. Oda and T. Morimura, “Simplified thrust limit equation of linear DC motor,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5073-5075, 1996.
    [7] I. Boldea and S. A. Nasar, Linear Electric Actuators and Generators, Cambridge University Press, UK, 1997.
    [8] A. A. Hassan and M. Azzam, “Robust position control for a field oriented linear brushless dc motor,” IEEE Proc., 2004, pp. 736-741.
    [9] L. Li, Y. Hu, and X. Li, “Research of novel electromagnetic catapults with many kinds of uses,” IEEE Trans. Magn., vol. 41, no. 1, pp. 474-477, 2005.
    [10] A. A. Aboulnaga and A. Emadi, “Design of high performance linear brushless DC motor with ironless core,” IEEE Proc., vol. 2, 2004, pp. 502-507.
    [11] I. Boldea and S. A. Nasar, “Linear electric actuators and generators,” IEEE Trans. Energy Conversion, vol. 14, no. 3, pp. 712-717, 1999.
    [12] G. Brandenburg, S. Brückl, J. Dormann, J. Heinzl, and C. Schmidt, “Comparative investigation of rotary and linear motor feed drive systems for high precision machine tools,” Proc. of 6th International Workshop on IEEE Advanced Motion Control, 2000, pp.384-389.
    [13] J. F. Gieras and Z. J. Piech, Linear Synchronous Motors: Transportation and Automation Systems, CRC Press, New York, 2000.
    [14] A. Basak, Permanent-Magnet DC Linear Motors, Oxford University Press, New York, 1996.
    [15] G. W. McLean, “Review of recent progress in linear motors,” IEE Proc. Electron. Power Applicat., vol. 135, no. 6, pp. 380-416, 1988.
    [16] R. B. Aronson, “Attack of the linear motors,” Manufacturing Engineering, pp. 60-71, May 1997
    [17] Z. Deng, I. Boldea, and S, A. Nasar, “Forces and parameters of permanent magnet linear synchronous machines,” IEEE Trans. Magn., vol. 23, no. 1, pp. 305-309, 1987
    [18] K. Hayafune and E. Masada, “Dynamics of the PM type linear synchronous motor for magnetically levitated carrier vehicle,” IEEE Trans. Magn., vol. 23, no. 5, pp. 2578-2580, 1987.
    [19] R. Akmese and J. F. Eastham, “Dynamic performance of a brushless DC motor tubular drive system,” IEEE Trans. Magn., vol. 25, pp. 3269-3271, 1989
    [20] Y. Yabuuchi, M. Kobayashi, M. Watada, D. Ebihara, T. Okada, and T. Taura, “Application of a cylindrical moving coil linear DC motor to printer head,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5028-5030, 1996.
    [21] M. Sanada, S. Morimoto, and Y. Takeda, “Interior permanent magnet linear synchronous motor for high-performance drives,” IEEE Trans. Ind. Applicat., vol. 33, no. 4, pp. 966-972, 1997.

    B. Brushless DC Motor Drives
    [22] P. Pillay and R. Krishnan, “Modelling of permanent magnet motor drives,” IEEE Trans. Ind. Electron., vol. 35, no. 4, pp.537-541, 1988.
    [23] A. Bolopion, D. Jouve, and R. Pacaut, “Control of permanent magnets synchronous machines: a simulation comparative survey,” Proc. of 5th Annual IEEE Applied Power Electronics Conference and Exposition, 1990, pp. 374 –383.
    [24] J. Tomasek, “Structural and performance fundamentals of sinewave-controlled brushless servo drives,” Proc. of 4th Annual IEEE Applied Power Electronics Conference and Exposition, 1989, pp. 173 -182.
    [25] P. Pillay and P. Freere, “Literature survey of permanent magnet AC motors and drives,” Proc. of IEEE Industry Applications Society Annual Meeting, vol. 1, 1989, pp. 74-84.
    [26] G. Liu and W. G. Dunford, “Comparison of sinusoidal excitation and trapezoidal excitation of a brushless permanent magnet motor,” Proc. of International Conf. Power Electronics and Variable-Speed Drives, 1991, pp. 446-450.
    [27] T. M. Jahns, “Motion control with permanent-magnet AC machines,” Proc. IEEE, vol. 82, no. 8, 1994, pp. 1241-1252.
    [28] D. C. Hanselman, Brushless Permanent-Magnet Motor Design, McGraw Inc., New York, 1994.
    [29] N. Mohan, T. M. Undeland, and W. P. Robins, Power Electronics: Converters, Applications and Design, John Wiley & Sons, New York, 1995.
    [30] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto, and Y. Takeda, “The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor,” Proc. IEEE IAS, 1999, pp. 840-845.
    [31] J. R. Hendershot and T. J. E Miller, Design of Brushless Permanent-Magnet Motors, New York: Magna Physics Div. Tridelta Industries Inc., 1994.
    [32] T. A. Lipo and F. R. Turnbull, “Analysis and comparison of two types of square-wave inverter drives,” IEEE Trans. Ind. Applicat., vol. 11, no. 2, pp. 137-147, Mar., 1975.
    [33] T. M. Jahns, “Torque production in permanent-magnet synchronous motor drives with rectangular current excitation,” IEEE Trans. Ind. Applicat., vol. 20, no. 4, pp. 803-813, Jul., 1984.
    [34] P. Pillay, and R. Krishnan, “Modeling, simulation and analysis of permanent-magnet motor drives, part I: the permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Applicat., vol. 25, no. 2, pp. 265-273, 1989.
    [35] P. Pillay, and R. Krishnan, “Modeling, simulation and analysis of permanent-magnet motor drives, part II: the brushless DC motor drive,” IEEE Trans. Ind. Applicat., vol. 25, no. 2, pp. 274-279, 1989.
    [36] Y. Dote, Servo Motor and Motion Control Using Digital Signal Processors. Englewood Cliffs: Prentice-Hall, 1990.

    C. Current-Controlled PWM Techniques
    [37] D. M. Brod and D. W. Novotny, “Current control of VSI-PWM inverters,” IEEE Trans. Ind. Applicat., vol. 21, no. 4, pp. 562-570, 1985.
    [38] J. Holtz, “Pulse modulation-a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992.
    [39] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
    [40] S. Ogasawara, M. Nishimura, H. Akagi, A. Nabae, and Y. Nakanishi, “A high performance AC servo system with permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 33, no. 1, pp. 87-91, 1986.
    [41] Y. Baudon, D. Jouve, and J. P. Ferrieux, “Current control of permanent magnet synchronous machines-experimental and simulation study,” IEEE Trans. Power Electron., vol. 7, no. 3, pp. 560-567, 1992.
    [42] Y. Baudon, D. Jouve, and J. P. Rognon, “Influence of control strategy on neutral point voltage behavior in permanent magnets synchronous machines,” Proc. IEEE PESC, 1989, pp. 784-790.
    [43] N. Matsui, and H. Ohashi, “DSP-based adaptive control of a brushless motor,” Proc. IEEE IAS, 1988, pp. 375-380.
    [44] J. Chen, and P. C. Tang, “A sliding mode current control scheme for PWM brushless DC motor drives,” IEEE Trans. Power Electron., vol. 14 , no. 3, pp. 541-550, 1999.
    [45] L. H. Hoang, S. Karim, and V. Philippe, “Analysis and implementation of a real-time predictive current controller for permanent-magnet synchronous servo drives,” IEEE Trans. Ind. Electron., vol. 41, no. 1, pp. 110-117, 1994.
    [46] I. H. Oh, Y. S. Jung, and M. J. Youn, “A source voltage-clamped resonant link inverter for a PMSM using a predictive current control technique,” IEEE Trans. Power Electron., vol. 14, no. 6, pp. 1122-1131, 1999.
    [47] J. A. Haylock, B. C. Mecrow, A. G. Jack, and D. J. Atkinson, “Enhanced current control of PM machine drives through the use of flux controllers,” Proc. IEEE IAS, 1998, pp. 467-474.
    [48] D. Jouve, J. P. Rognon, and D. Roye, “Effective current and speed controllers for permanent-magnet machines: a survey,” Proc. IEEE APEC, 1990, pp. 384-393.
    [49] T. H. Chen, K. C. Huang, and C. M. Liaw, “High-frequency switching-mode power amplifier for shaker armature excitation,” IEE Proc. Electron. Power Applicat., vol. 144, no. 6, 415-422, 1997.
    [50] T. H. Chen, and C. M. Liaw, “Vibration acceleration control of an inverter-fed electrodynamic shaker,” IEEE/ASME Trans. Mechatron., vol. 4, no. 1, pp. 60-70, 1999.
    [51] C. M. Liaw and S. J. Chiang, “Robust control of multi-module current-mode controlled converters,” IEEE Trans. Power Electron., vol. 8, no. 4, pp. 455-465, 1993.
    [52] J. C. Balda, and P. Pillay, “Speed controller design of a vector-controlled permanent magnet synchronous motor drive with parameter variation,” Proc. IEEE IAS, 1990, pp. 163-168.
    [53] D. W. Novotny and T. A. Lipo, Vector Control and Dynamics of AC Drives, Oxford University Press, New York, 1996.
    [54] B. J. Kang, and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001.
    [55] H. Henao, G. A. Capolino, and J. A. Martinez-Velasco, “A new structure of fuzzy-hysteresis current controller for vector-controlled induction machine drives,” Proc. IEEE PESC, 1996, pp. 708-712.
    [56] A. Tilli and A. Tonielli, “Sequential design of hysteresis current controller for three-phase inverter,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 771-781, 1998.
    [57] B. D. Min, J. H. Youm, and B. H. Kwon, “SVM-based hysteresis current controller for three-phase PWM rectifier,” IEE Proc. Electron. Power Applicat., vol. 146, no. 2, pp. 225-230, 1999.
    [58] M. Dawande and G. K. Dubey, “Bang-bang current control with predecided switching frequency for switch-mode rectifiers,” IEEE Trans. Ind. Electron., vol. 46, no. 1, pp. 61-66, 1999.
    [59] H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu, and J. M. Huang, “Robust current control for brushless DC motors,” IEE Proc. Electr. Power Appl., vol. 147, no. 6, pp. 503-512, 2000.
    [60] M. M. Kadjoudj, E. H. Benbouzid, C. Ghennai, and D. Diallo, “A robust hybrid current control for permanent-magnet synchronous motor drive,” IEEE Trans. Energy Conversion, vol. 19, no. 1, pp. 109-115, 2004.
    [61] N. Bianchi, S. Bolognani, and M. Zigliotto, “Time optimal current control for PMSM drives,” IEEE 2002 28th Annual Conference of the IECON, vol. 1, 5-8 Nov., 2002, pp. 745-750.
    [62] K. H. Kim, I. C. Baik, and M. J. Youn, “An improved digital current control of a PM synchronous motor with a simple feedforward disturbance compensation scheme,” Proc. IEEE PESC, 1998, pp. 101-107.
    [63] O. Kukrer, “Discrete-time current control of voltage-fed three-phase PWM inverters,” IEEE Trans. Power Electron., vol. 11, no. 2, pp. 260-269, 1996.
    [64] H. T. Moon, H. S. Kim, and M. J. Youn, “A discrete-time predictive current control for PMSM,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 464-472, 2003.
    [65] W. L. Soong, and T. J. E. Miller, “Field-weakening performance of brushless synchronous AC motor drives,” IEE Proc. Electr. Power Appl., vol. 141, no. 6, pp. 331-340, 1994.
    [66] B. H. Bae, N. Patel, S. Schulz, and S. K. Sul, “New field weakening technique for high saliency interior permanent magnet motor,” Conference Record of the 38th IAS Annual Meeting, vol. 2, 12-16 October, 2003, pp. 898-905.

    D. Model Estiamtion and Dynamic Control Techniques
    [67] A. De Carli and R. Caccia, “A comparison of some control strategies for motion control,” Pergamon Mechatornics, vol. 5, no. 1, pp. 61-71, 1995.
    [68] K. Ohnishi, M. Shibata and T. Murakami, “Motion control for advanced mechatronics,” IEEE/ASME Trans. Mechatron., vol. 1, no. 1, pp. 56-67, 1996.
    [69] G. Ellis and R. D. Lorenz, “Comparison of motion control loops for industrial applications,” IEEE Conference Record of 34th IAS Annual Meeting, 3-7 October, 1999, pp. 2599-2605.
    [70] S. Komada, M. Ishida, K. Ohnishi and T. Hori, “Motion control of linear synchronous motors based on disturbance observer,” IEEE Proceedings of 16th Annual Conference of Industrial Electronics Society, 27-30 November, vol. 1, 1990, pp. 154-159.
    [71] H. S. Lee and M. Tomizuka, “Robust motion controller design for high-accuracy positioning systems,” IEEE Trans. Ind. Electron., vol. 43, no. 1, pp. 48-55, 1996.
    [72] C. H. Chen and H. Van Brussel, “Servo control of flexible beam with inverse-dynamics feedforward and disturbance observer,” IEEE Proceedings of International Symposium on Industrial Electronics, 1-3 June, 1993, pp. 702-707.
    [73] L. Guo and M. Tomizuka, “High-speed and high-precision motion control with an optimal hybrid feedforward controller,” IEEE/ASME Trans. Mechatron., vol. 2, no. 2, pp. 110-122, 1997.
    [74] G. Otten, T. J. A. de Vries, J. van Amerongen, A. M. Rankers and E. W. Gaal, “Linear motor motion control using a learning feedforward controller,” IEEE/ASME Trans. Mechatron., vol. 2, no. 3, pp. 179-187, 1997.
    [75] F. Fujimoto, Y. Hori, T. Yamaguchi and S. Nakagawa, “Proposal of perfect tracking and perfect disturbance rejection control by multirate sampling and applications to hard disk drive control,” IEEE Proceedings of the 38th Conference on Decision and Control, vol. 5, 7-10 December, 1999, pp. 5277-5282.
    [76] K. K. Tan, S. Y. Lim and S. N. Huang, “Two-degree-of-freedom controller incorporating RBF adaptation for precision motion control applications,” IEEE/ASME Proceedings of the International Conference on Advanced Intelligent Mechatronics, 19-23 September, 1999, pp. 848-853.
    [77] C. M. Liaw, R. Y. Shue, H. C. Chen and S. C. Chen, “Development of a linear brushless DC motor drive with robust position control,” IEE Proc. Electron. Power Applicat., vol. 148, no. 2, March 2001, pp. 111-118.
    [78] K. K. Tan, T. H. Lee, H. F. Dou, S. J. Chin and S. Zhao, “Precision motion control with disturbance observer for pulsewidth-modulated-driven permanent-magnet linear motors,” IEEE Trans. Magn., vol. 39, no. 3, pp. 1813-1818, 2003.
    [79] S. Komada, T. Kimura, M. Ishida and T. Hori, “Robust position control of manipulators based on disturbance observer and inertia identifier in task space,” The Proceedings of 4th International Workshop on Advanced Motion Control, 18-21 March, 1996, vol. 1, pp. 225-230.
    [80] S. Komada, K. Nomura, M. Ishida, K. Ohnishi and T. Hori, “Adaptive robust force control by disturbance observer,” The Proceedings of International Conference on Industrial Electronics, Control, Instrumentation and Automation, vol. 3, 9-13 November, 1992, pp. 1494-1499.
    [81] Y. Bin, M. Al-Majed and M. Tomizuka, “High-performance robust motion control of machine tools: an adaptive robust control approach and comparative experiments,” IEEE/ASME Trans. Mechatron., vol. 2, no. 2, pp. 63-76, 1997.
    [82] K. H. Kim and M. J. Youn, “A nonlinear speed control for a PM synchronous motor using a simple disturbance estimation technique,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 524-535, 2002.
    [83] A. Rojko and K. Jezernik, “Sliding-mode motion controller with adaptive fuzzy disturbance estimation,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 963-971, 2004.
    [84] T. Miyazaki, K. Ohishi, K. Inomata, K. Kuramochi, D. Koide and D. Tokumaru, “Robust feedforward tracking control based on sudden disturbance observer and ZPET control for optical disk recording system,” The 8th IEEE International Workshop on Advanced Motion Control, 25-28 March, 2004, pp. 353-358.
    [85] K. K. Tan, S. Zhao and S. Huang, “Iterative reference adjustment for high-precision and repetitive motion control applications,” IEEE Trans. Contr. Syst. Technol., vol. 13, no. 1, pp. 85-97, 2005.
    [86] B. K. Kim, W. K. Chung, H. T. Choi, I. H. Suh, and Y. H. Chang, “Robust internal loop compensator design for motion control of precision linear motor,” IEEE International Symposium on Industrial Electronics, ISIE'99 Proceedings, vol. 3, 1999, pp.1045-1050.
    [87] J. S .Ko, , S. K. Youn, and B. K. Bose, “A study on adaptive load torque observer for robust precision position control of BLDC motor,” IEEE 25th Annual Conference of Industrial Electronics Society, IECON'99 Proceedings, vol. 3, 1999, pp. 1091-1096.
    [88] K. K. Tan, H. Dou, Y. Chen, and T. H. Lee, “High precision linear motor control via relay-tuning and iterative learning based on zero-phase filtering,” IEEE Trans. Contr. Syst. Technol., vol. 9, no. 2, pp. 244-253, 2001.
    [89] C. J. Kempf, and S. Kobayashi, “Disturbance observer and feedforward design for a high-speed direct-drive positioning table,” IEEE Trans. Contr. Syst. Technol., vol. 7, no. 5, pp. 513-526, 1999.
    [90] H. Fujimoto, and B. Yao, “High performance motion control of linear motors based on multirate adaptive robust control,” The 8th IEEE International Workshop on Advanced Motion Control, 25-28 March, 2004, pp. 547-552.
    [91] M. Jalili-Kharaajoo, and R. Fazaie, “Discrete-time sliding mode control of permanent magnet linear synchronous motor in high-performance motion with large parameter uncertainty,” SICE 2003 Annual Conference, vol. 3, 4-6 Aug, 2003, pp. 3127-3130.
    [92] A. Rubaai, “Implementation of an intelligent-position-controller-based matrix formulation using adaptive self-tuning tracking control,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 627-636, 2003.
    [93] B. J. Kang, L. S. Hung, S. K. Kuo, S. C. Lin and C. M. Liaw, “ 2DOF position control for a magnetic suspension positioning stage driving by inverter-fed linear motor,” Mechatronics, vol. 13, no. 7, pp. 677-696, 2003.
    [94] C. M. Liaw, C. T. Pan. and M. S. Ouyang, “Model reduction of discrete systems using the power decomposition method and the system identification method,” IEE Proceedings, vol. 133, no. 1, p.p. 30-34, January, 1986.

    E. Command Forming
    [95] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd edition, John Wiley & Sons, Inc., 2002.
    [96] J. B. Song, and K. S. Byeon, “Design of time delay controller based on variable reference model,” The Proceedings of American Control Conference, vol. 6, 1998, pp. 3339-3343.
    [97] J. G. Bollinger, and N. A. Duffie, Computer Control of Machines and Processes, Addison-Wesley, Reading, Massachusetts, 1988.
    [98] A. D. Christian, and W. P. Seering, “Initial experiments with a flexible robot,” The Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, 13-18 May, 1990, pp. 722-727.
    [99] H. Tian, “Applications of intelligent control in improving dynamics of precision motion systems used in microelectronics manufacturing,” The Proceedings of 27th Annual IEEE/SEMI International Electronics Manufacturing Technology Symposium, 17-18 July, 2002, pp. 410-414.
    [100] M. C. Reynolds, and P. Meckl, “The application of command shaping to the tracking problem,” The Proceedings of the American Control Conference, vol. 4, 4-6 June, 2003, pp. 3148-3153.

    F. Digital Signal Processor and Digital Control
    [101] F. Moynihan, “Fundamentals of DSP-based control for AC machines,” Analog Dialogue, vol. 34, no. 6, 2000.

    [102] F. Moynihan, “High-Performance Motion Control,” Analog Devices Inc., USA, 1999.
    [103] A. Murray, P. Kettle, A. Margio and F. Moynihan, “Advances in DSP based motor control solutions,” Analog Devices Inc., USA, 1995.
    [104] Single-Chip, DSP-Based High Performance Motor Controller ADMC 401, Analog Devices Inc., 2000.
    [105] ADSP-2100 Family User’s Manual, Analog Devices Inc., 1995.
    [106] K. Ogata, Discrete-Time Control Systems, Prentice-Hall, New Jersey, 1995.
    [107] I. D. Landau, Adaptive Control: The Model Reference Approach, Marcel Deckker Inc., New York, 1982.
    [108] H. Fujimoto and A. Kawanmra, “Perfect tracking digital motion control based on two-degree-of-freedom multirate feedforward control,” 5th International Workshop on Advanced Motion Control, 1998, p.p. 322 –327.
    [109] P. Katz, Digital Control Using Microprocessors, Prentice-Hall, New Jersey, 1981.
    [110] I. D. Landau, System Identification and Control Design, Prentice-Hall, New Jersey, 1990.
    [111] J. G. Bollinger and N. A. Duffie, Computer Control of Mechines and Processes, Addison-Wesley, Reading, Massachusetts, 1988.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE