研究生: |
曾美淇 Tseng, Mei-Chi |
---|---|
論文名稱: |
探索失智症家庭照顧者慢性壓力的預測模型: 基於機器學習的多變量研究 Exploring predictive models of dementia family caregiver chronic stress: Multivariate research based on machine learning |
指導教授: |
葉維彰
Yeh, Wei-Chang 邱逸榛 Chiu, Yi-Chen |
口試委員: |
梁韵嘉
賴智明 謝宗融 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 125 |
中文關鍵詞: | 失智症家庭照顧者 、慢性壓力評估 、因素分析 、特徵選擇 、預測分析 |
外文關鍵詞: | Dementia Family Caregivers, Chronic Stress Assessment, Exploratory Factor Analysis, Feature selection, Predictive Analysis |
相關次數: | 點閱:83 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著失智症患者人數的增加,家庭照顧者面臨的挑戰日益嚴峻,包括照顧患者日常生活以及管理患者的多種精神行為症狀,這些不僅增加了照顧難度,同時也顯著提高了照顧者的心理壓力和生理負擔。根據勞動部從衛生福利部的「國民長期照顧需要調查」推估,因照顧需求受到影響的就業人口約有231萬人,占全國就業人口的約五分之一。這表明家庭照顧者的支持和資源的提供是一個迫切需要關注的社會議題。
儘管慢性照顧壓力的影響已被廣泛認知,現有研究對於照顧者壓力反應的全面評估和深入理解仍存在不足,特別是在結合主觀心理評估與客觀生理指標方面。此外,現有研究方法在探索照顧者壓力反應的潛在結構和預測因子方面亦存在限制。
本研究旨在通過探索性因素分析(EFA)和特徵選擇技術,深入分析失智症家庭照顧者面對的慢性壓力反應,以揭示壓力反應背後的潛在結構,並識別出對照顧者壓力有顯著影響的特徵。本研究首先利用EFA探索照顧者壓力反應的多維度結構,再通過特徵選擇技術從綜合心理和生理數據中篩選出最具預測力的特徵,最終應用於建立精確的回歸預測模型,以預測照顧者壓力的各個維度。
透過本研究,我們提供一個更全面的視角來理解失智症家庭照顧者所面臨的慢性壓力,並為開發針對性的支持和介入策略提供科學依據。此外,本研究的方法論框架也為未來在照護領域內應用探索性因素分析和特徵選擇技術提供了新的思路和可能性,特別是在結合客觀生理指標和主觀心理評估以深入探索照顧者壓力反應的潛在因素和結構方面。
Along with an increase in the number of dementia patients, family caregivers conduct multiple domains of care activities, including both personal and clinical aspects of patient care, as well as the management of many psychological and behavioral problems of patients. Apart from being challenging, such care significantly increases the psychological stress and physiological burden on caregivers. According to the survey data from the Ministry of Labor's "Long-term Care Needs Survey" of the Ministry of Health and Welfare, Taiwan, the proportion of the employed population affected by caregiving is about one-fifth, with more than 2.31 million people being burdened by family caregiving tasks.
Although the impact of chronic caregiving stress is widely recognized, there is still a lack of comprehensive assessment and deeper understanding of caregiving stress, especially those that combine subjective mental assessment and objective physiological indicators. Additionally, current research has limitations in exploring potential structures and predictors of a caregiver's stress response.
Therefore, this study aimed to employ Exploratory Factor Analysis (EFA) and feature selection techniques to thoroughly analyze the chronic stress responses faced by dementia family caregivers. It seeks to uncover the latent structure behind stress responses and identify significant predictors affecting caregivers' stress. Initially, the study used EFA to explore the multidimensional structure of caregivers' stress responses, followed by employing feature selection techniques to filter the most predictive features from comprehensive psychological and physiological data. These selected features then were applied to construct accurate regression prediction models to forecast various dimensions of caregiver stress.
Through this research, we provide a more holistic perspective to understand the chronic stress experienced by dementia family caregivers and offering a scientific basis for developing targeted support and intervention strategies. Additionally, the methodological framework of this study presents new directions and possibilities for future applications of EFA and feature selection techniques in the caregiving domain, especially in integrating objective physiological measures and subjective psychological assessments to delve into the latent factors and structure of caregivers' stress responses.
[1] World Health Organization. (2021). Global status report on the public health response to dementia.
[2] 台灣失智症協會。(2023年5月)。〈什麼是失智症〉。http://www.tada2002.org.tw/About/IsntDementia
[3] 國家衛生研究院。(2023年7月)。〈探討友善照護環境建立,推動失智共融社會,國衛院舉辦2023高齡失智友善共融論壇〉。https://www.nhri.edu.tw/News/more?id=9046a042a10e4c99befc952a845eadee
[4] 陳昱名(2013)。老年失智症病患家庭照顧者之照顧負荷。崇仁學報,(7),1-22。
[5] 張文芸(1996)。癡呆症老人問題行為的認識. 護理雜誌, 43(4), 85-91.
[6] 邱麗蓉(1999)。失智症老人家屬照顧壓力源、評價、因應與健康狀況之探討。(未出版碩士論文)。長庚大學護理研究所, 桃園縣。
[7] 卓春英(2001)。頤養天年-台灣家庭老人照護的變遷。臺北:巨流。
[8] 陳燕禎(2006)。我國老人照顧資源變遷之初探。社區發展季刊,114,239-248。
[9] 張國煒(2008)。照顧工作外包話:照顧失能女性老人的家庭分工動態。社區發展季刊,121,385-405。
[10] 陳明珍(2009)。我國居家服務政策發展與省思。社區發展季刊,127,287-303。
[11] 白明奇(2000)。延長的再會。應用心理研究,(8),1-3。
[12] Penrod, J., Yu, F., Kolanowski, A., Fick, D. M., Loeb, S. J., & Hupcey, J. E. (2007). Reframing person-centered nursing care for persons with dementia. Research and theory for nursing practice, 21(1), 57–72.
[13] 林淑錦、白明奇(2006)。失智症病患主要照顧者的壓力-以家庭生態觀點論之。長期照護雜誌,10(4),412-425。
[14] 曾煥裕(2020)。失智症家庭照顧者人口特質、社會支持需求與長期照顧服務需求之關係初探。福祉科技與服務管理學刊,8(2),148-176。
[15] Creese, J., Bédard, M., Brazil, K., & Chambers, L. (2008). Sleep disturbances in spousal caregivers of individuals with Alzheimer's disease. International psychogeriatrics, 20(1), 149–161.
[16] Cho, M. H., Dodd, M. J., Lee, K. A., Padilla, G., & Slaughter, R. (2006). Self-reported sleep quality in family caregivers of gastric cancer patients who are receiving chemotherapy in Korea. Journal of cancer education : the official journal of the American Association for Cancer Education, 21(1 Suppl), S37–S41.
[17] Clark P. C. (2002). Effects of individual and family hardiness on caregiver depression and fatigue. Research in nursing & health, 25(1), 37–48.
[18] Chiu, Y. C., Lee, Y. N., Wang, P. C., Chang, T. H., Li, C. L., Hsu, W. C., & Lee, S. H. (2014). Family caregivers' sleep disturbance and its associations with multilevel stressors when caring for patients with dementia. Aging & mental health, 18(1), 92–101.
[19] Roepke, S. K., Mausbach, B. T., von Känel, R., Ancoli-Israel, S., Harmell, A. L., Dimsdale, J. E., Aschbacher, K., Mills, P. J., Patterson, T. L., & Grant, I. (2009). The moderating role of personal mastery on the relationship between caregiving status and multiple dimensions of fatigue. International journal of geriatric psychiatry, 24(12), 1453–1462.
[20] Rowe, M. A., McCrae, C. S., Campbell, J. M., Benito, A. P., & Cheng, J. (2008). Sleep pattern differences between older adult dementia caregivers and older adult noncaregivers using objective and subjective measures. Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine, 4(4), 362–369.
[21] Rodakowski, J., Skidmore, E. R., Rogers, J. C., & Schulz, R. (2012). Role of social support in predicting caregiver burden. Archives of Physical Medicine and Rehabilitation, 93(12), 2229–2236.
[22] Cohen, C. A., et al. (2002). Positive aspects of caregiving: rounding out the caregiver experience. International Journal of Geriatric Psychiatry, 17, 184-188.
[23] Reinke, C., Doblhammer, G., Schmid, M., & Welchowski, T. (2023). Dementia risk predictions from German claims data using methods of machine learning. Alzheimer's & dementia : the journal of the Alzheimer's Association, 19(2), 477–486.
[24] Goel, A., Lal, M., & Javadekar, A. N. (2023). Comparative Analysis of the Machine and Deep Learning Classifier for Dementia Prediction. In 2023 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA) (pp. 1-8). Ernakulam, India.
[25] Kiecolt-Glaser, J. K., Glaser, R., Shuttleworth, E. C., Dyer, C. S., Ogrocki, P., & Speicher, C. E. (1987). Chronic stress and immunity in family caregivers of Alzheimer’s disease victims. Psychosomatic Medicine, 49, 523–535.
[26] Ory, M. G., Hoffman, R. R., III, Yee, J. L., Tennstedt, S., & Schulz, R. (1999). Prevalence and impact of caregiving: A detailed comparison between dementia and nondementia caregivers. The Gerontologist, 39, 177–185.
[27] Pinquart, M., & Sörensen, S. (2003). Differences between caregivers and non-caregivers in psychological health and physical health: A meta-analysis. Psychology and Aging, 18, 250–267.
[28] Kiecolt-Glaser, J. K., Marucha, P. T., Malarkey, W. B., Mercado, A. M., & Glaser, R. (1995). Slowing of wound healing by psychological stress. Lancet (London, England), 346(8984), 1194–1196.
[29] Brashares, H. J., & Catanzaro, S. J. (1994). Mood regulation expectancies, coping responses, depression, and sense of burden in female caregivers of Alzheimer's patients. The Journal of nervous and mental disease, 182(8), 437–442.
[30] Haley, W. E., Levine, E. G., Brown, S. L., Berry, J. W., & Hughes, G. H. (1987). Psychological, social, and health consequences of caring for a relative with senile dementia. Journal of the American Geriatrics Society, 35(5), 405–411.
[31] Schulz R, Newsome JT, Fleissner K, et al. Caregiving as a risk factor for mortality. The caregiver health effects study. JAMA. 1999;282: 2215–2219.
[32] Chang, Y. P., Lorenz, R. A., Phillips, M., Peng, H. L., & Szigeti, K. (2020). Fatigue in Family Caregivers of Individuals With Dementia: Associations of Sleep, Depression, and Care Recipients' Functionality. Journal of gerontological nursing, 46(9), 14–18.
[33] 邱逸榛、李怡濃、徐文俊、陳獻宗、李佳琳、王鵬智(2010)。失智症家庭照顧者睡眠障礙及其相關因素。護理雜誌,57(4),29-39。
[34] 曾雯婷(2007)。探討失智者睡眠障礙與家庭照顧者睡眠品質相關性〔碩士論文,國立臺灣大學〕。
[35] Wilcox, S., & King, A. C. (1999). Sleep complaints in older women who are family caregivers. The journals of gerontology. Series B, Psychological sciences and social sciences,54(3), P189–P198
[36] Edwards, L. and Guilliams, T.G. (2010) Chronic Stress and the HPA Axis: Clinical Assessment and Therapeutic Considerations. The Standard, 9, 1-12.
[37] Knezevic, E., Nenic, K., Milanovic, V., & Knezevic, N. N. (2023). The Role of Cortisol in Chronic Stress, Neurodegenerative Diseases, and Psychological Disorders. Cells, 12(23), 2726.
[38] Chrousos, G. P. (1995). The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. New England Journal of Medicine, 332(20), 1351-1362.
[39] Kiecolt-Glaser, J. K., Preacher, K. J., MacCallum, R. C., At- kinson, C., Malarkey, W. B., & Glaser, R. (2003). Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Proceeding of the National Academy of Science of the United States of America, 100(15), 9090- 9095.
[40] Bologa, R. M., Levine, D. M., Parker, T. S., Cheigh, J. S., Serur, D., Stenzel, K. H., & Rubin, A. L. (1998). Interleukin-6 predicts hypoalbuminemia, hypocholesterolemia, and mortality in hemodialysis patients. American journal of kidney diseases: the official journal of the National Kidney Foundation, 32(1), 107–114.
[41] Dalui, A., Guha, P., De, A., Chakraborty, S., & Chakraborty, I. (2014). Assessment of stress & related albuminuria in caregivers of severe mentally ill persons. The Indian journal of medical research, 139(1), 174–177.
[42] 邱逸榛、黃舒萱、徐亞瑛(2004)。阿茲海默氏症患者照顧者之疲憊、負荷與憂鬱之間的關係。長期照護雜誌,7(4),338-351。
[43] Lehman, B. (2008). Understanding stress, immunity, and sleep disturbances in caregivers of persons with dementia.
[44] Ding, J.-l. (2011). Sleep Deficit, Fatigue, and Health in Family Caregivers of Persons with Dementia Awaiting Placement (Master's thesis). Faculty of Nursing, University of Alberta, Edmonton, Alberta.
[45] Corrêa, M. S., Vedovelli, K., Giacobbo, B. L., de Souza, C. E., Ferrari, P., de Lima Argimon, I. I., Walz, J. C., Kapczinski, F., & Bromberg, E. (2015). Psychophysiological correlates of cognitive deficits in family caregivers of patients with Alzheimer Disease. Neuroscience, 286, 371–382.
[46] Burke, S. L., Maramaldi, P., Cadet, T., & Kukull, W. (2016). Associations between depression, sleep disturbance, and apolipoprotein E in the development of Alzheimer's disease: dementia. International psychogeriatrics, 28(9), 1409–1424.
[47] Bartholomew, D., Knotts, M., & Moustaki, I. (2011). Latent variable models and factor analysis: A unified approach. (3rd ed.). West Sussex, UK: John Wiley & Sons.
[48] Cattell, R.B. (1973). Factor analysis. Westport, CT: Greenwood Press.
[49] Rummel, R.J. (1970). Applied factor analysis. Evanston, IL: Northwestern University Press.
[50] Child, D. (2006). The essentials of factor analysis. (3rd ed.). New York, NY: Continuum International Publishing Group.
[51] DeCoster, J. (1998). Overview of factor analysis. Retrieved February 24, 2024 from http://www.stat-help.com/notes.html
[52] McDonald, R.P. (1985). Factor analysis and related methods. Hillside, NJ: Lawrence Erlbaum Associates, Inc.
[53] Tucker, L.R., & MacCallum, R.C. (1997). Exploratory factor analysis. Retrieved February 24, 2024, from http://www.unc.edu/~rcm/book/ch7.pdf
[54] Roberson III, R. B., Elliott, T. R., Chang, J. E., & Hill, J. N. (2014). Exploratory Factor Analysis in Rehabilitation Psychology: A Content Analysis. Rehabilitation Psychology, 59(4), 429-438.
[55] Basilevsky, A.: Statistical Factor Analysis and Related Methods: Theory and Applications. New York, NY, Wiley (1994)
[56] Cohen, L. W., et al. (2015). Psychosocial factors of caregiver burden in child caregivers: Results from the new national study of caregiving. Health and Quality of Life Outcomes, 13, 120.
[57] Wilhalme, H., Goukasian, N., De Leon, F., He, A., Hwang, K. S., Woo, E., ... Apostolova, L. G. (2017). A comparison of theoretical and statistically derived indices for predicting cognitive decline. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 6, 171-181.
[58] Sun, J., Zhang, H., Li, Q., Liu, H., Lu, X., & Hou, K. (2021). Contamination degree prediction of insulator surface based on exploratory factor analysis-least square support vector machine combined model. High Voltage, 6, 264–277.
[59] Liu, H., & Yu, L. (2005). Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering, 17, 491-502.
[60] Aparna, U. R., & Paul, S. (2016). Feature selection and extraction in data mining. In Proceedings of the 2016 Online International Conference on Green Engineering and Technologies (IC-GET) (pp. 1-3). Coimbatore, India, November 2016.
[61] Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182.
[62] Battiti, R. (1994). Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks, 5(4), 537-550.
[63] Yang, H., & Moody, J. (1999). Data visualization and feature selection: New algorithms for nongaussian data. Advances in Neural Information Processing Systems, 12.
[64] Lian, L., Zheng, M., He, R., Lin, J., Chen, W., Pei, Z., & Yao, X. (2022). Analysing the influencing factors on caregivers' burden among amyotrophic lateral sclerosis patients in China: a cross-sectional study based on data mining. BMJ open, 12(9), e066402.
[65] Azhagusundari, B., & Thanamani, A. S. (2013). Feature selection based on information gain. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2(2), 18-21.
[66] Xiao, C., Ye, J., Esteves, R. M., & Rong, C. (2016). Using Spearman's correlation coefficients for exploratory data analysis on big dataset. Concurrency and Computation: Practice and Experience, 28(14), 3866-3878.
[67] Zhang, Y., et al. (2015). Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning. Frontiers in Computational Neuroscience, 9, 66.
[68] Jin, X., Xu, A., Bie, R., & Guo, P. (2006). Machine learning techniques and chi-square feature selection for cancer classification using SAGE gene expression profiles. In International Workshop on Data Mining for Biomedical Applications (pp. 106-115). Springer.
[69] A. Janecek, W. Gansterer, M. Demel, and G. Ecker, "On the relationship between feature selection and classification accuracy," in New challenges for feature selection in data mining and knowledge discovery, 2008: PMLR, (Vol. 4, pp. 90-105).
[70] Zebari, R., Abdulazeez, A., Zeebaree, D., Zebari, D., & Saeed, J. (2020). A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction. Journal of Applied Science and Technology Trends, 1(2), 56-70.
[71] Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16-28.
[72] Altun, H., & Polat, G. (2009). Boosting selection of speech related features to improve performance of multi-class SVMs in emotion detection. Expert Systems with Applications, 36(4), 8197-8203.
[73] Abazari, A., Chatterjee, S., & Moniruzzaman, M. (2024). Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.AMIA ... Annual Symposium proceedings. AMIA Symposium, 2023, 243–252.
[74] Rashidi, H. H., Tran, N. K., Betts, E. V., Howell, L. P., & Green, R. (2019). Artificial Intelligence and Machine Learning in Pathology: The Present Landscape of Supervised Methods. Academic pathology, 6, 2374289519873088.
[75] Peng, L. M., Chiu, Y. C., Liang, J., & Chang, T. H. (2018). Risky wandering behaviors of persons with dementia predict family caregivers' health outcomes. Aging & mental health, 22(12), 1650–1657.
[76] Tai, L. A., Tsai, L. Y., & Chiu, Y. C. (2023). Relation of environmental factors with activity limitations and participation restrictions in older adults with diabetes mellitus over time: an international classification of functioning framework perspective. BMC geriatrics, 23(1), 335.
[77] Kim, H., Chang, M., Rose, K., & Kim, S. (2012). Predictors of caregiver burden in caregivers of individuals with dementia. Journal of advanced nursing, 68(4), 846–855.
[78] Rodakowski, J., Skidmore, E. R., Rogers, J. C., & Schulz, R. (2012). Role of social support in predicting caregiver burden. Archives of Physical Medicine and Rehabilitation, 93(12), 2229–2236.
[79] Lim, S. J., Lee, Z., Kwon, L. N., & Chun, H. W. (2021). Medical Health Records-Based Mild Cognitive Impairment (MCI) Prediction for Effective Dementia Care. International journal of environmental research and public health, 18(17), 9223.
[80] Antoniadi, A. M., Galvin, M., Heverin, M., Hardiman, O., & Mooney, C. (2020). Prediction of caregiver burden in amyotrophic lateral sclerosis: a machine learning approach using random forests applied to a cohort study. BMJ open, 10(2), e033109.
[81] Khan, T., & Jacobs, P. G. (2021). Prediction of Mild Cognitive Impairment Using Movement Complexity. IEEE journal of biomedical and health informatics, 25(1), 227–236.
[82] Antoniadi, A. M., Galvin, M., Heverin, M., Hardiman, O., & Mooney, C. (2021). Prediction of caregiver quality of life in amyotrophic lateral sclerosis using explainable machine learning. Scientific reports, 11(1), 12237.
[83] Radloff, L. S. (1977). The CES-D Scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1(3), 385–401.
[84] Chiu, Y. H. (2002). Getting lost behavior and directed attention impairments in Taiwanese patients with early Alzheimer’s disease (Unpublished doc toral dissertation). Ann Arbor, MI: University of Michigan.
[85] Lee, K. A. & DeJoseph, J. (1992). Sleep disturbances, vitality, and fatigue among a select group of employed childbearing women. Birth, 19(4), 208-213.
[86] Lee, K. A. (1992). Self-reported sleep disturbances in employed women. Sleep, 15(6), 493-498.
[87] Leung, V. P. Y., Lam, L. C. W., Chiu, H. F. K., Cummings, J. L., Chen, Q. L. (2001). Validation study of the Chinese version of the neuropsychiatric inventory (CNPI). International Journal of Geriatric Psychiatry, 16, 789-793.
[88] Reisberg, B., Auer, S. R., & Monteiro, I. M. (1996). Behavioral pathology in Alzheimer’s disease (BEHAVE-AD) rating scale. International Psychogeriatrics, 8 (supp.3), 301-308.
[89] Shah, S., Vanclay, F., & Cooper, B. (1989). Improving the sensitivity of the Barthel Index for stroke rehabilitation. Journal of Clinical Epidemiology, 42(8), 703–709.
[90] Sheikh, J. I. & Yesavage, J. A. (1986). Geriatric Depression Scale (GDS): recent evidence and development of a short version. In T. L. Brink (Ed.) Clinical Gerontology: a guide to assessment and intervention. New York: Hawthorn (pp. 165-173).
[91] Algase, L. D., Son, G.R, Beattie, E., Song, J. A., Leitsch, S. & Yao, L. (2004). The interreatedness of wandering and wayfinding in a community sample of persons with dementia. Dementia & Geriatric Cognitive Disorders, 17, 231-239.
[92] Folstein, M. F., Folstein, S. E. & McHugh, P. R. (1975). “Mini-Mental State”: A practical method for grading the cognitive state of patients for clinicians. Journal of Psychiatric Research, 12, 189-198.
[93] Lin KN, Liu HS. 2003. Clinical Dementia Rating (CDR), Chinese version (in Chinese). Acta Neurology Taiwan,12, 155-165.
[94] Xu, X., Xia, L., Zhang, Q., Wu, S., Wu, M., & Liu, H. (2020). The ability of different imputation methods for missing values in mental measurement questionnaires. BMC Medical Research Methodology, 20, 42.
[95] Yong, A. G., & Pearce, S. (2013). A beginner’s guide to factor analysis: Focusing on exploratory factor analysis. Tutorials in Quantitative Methods for Psychology, 9, 79-94.
[96] Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso.Journal of the Royal Statistical Society. Series B (Methodological),58(1), 267–288.
[97] Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32.
[98] Roberson III, R. B., Elliott, T. R., Chang, J. E., & Hill, J. N. (2014). Exploratory Factor Analysis in Rehabilitation Psychology: A Content Analysis. Rehabilitation Psychology, 59(4), 429-438.
[99] DiStefano, C., Zhu, M., & Mîndrilă, D. (2009). Understanding and Using Factor Scores: Considerations for the Applied Researcher. Practical Assessment, Research, and Evaluation, 14(20)
[100] Carter, P. A., & Chang, B. L. (2000). Sleep and depression in cancer caregivers. Cancer nursing, 23(6), 410–415.
[101] Gibson, R. H., Gander, P. H., & Jones, L. M. (2014). Understanding the sleep problems of people with dementia and their family caregivers. Dementia (London, England), 13(3), 350–365..
[102] Chiao, C. Y., Wu, H. S., & Hsiao, C. Y. (2015). Caregiver burden for informal caregivers of patients with dementia: A systematic review. International nursing review, 62(3), 340–350.
[103] McCurry, S. M., & Teri, L. (1996). Sleep Disturbance in Elderly Caregivers of Dementia Patients. Clinical Gerontologist, 16(2), 51–66.
[104] 國家發展委員會。(2023)。〈高齡化〉。。https://www.ndc.gov.tw/Content_List.aspx?n=2688C8F5935982DC
[105] Taylor, B., & Barling, J. (2004). Identifying sources and effects of carer fatigue and burnout for mental health nurses: a qualitative approach.. International journal of mental health nursing, 13 2, 117-25 .
[106] 衛生福利部。(2022)。〈人狀況調查〉。https://dep.mohw.gov.tw/DOS/lp-5095-113-xCat-y111.html
[107] Mahoney, R., Regan, C., Katona, C., & Livingston, G. (2005). Anxiety and depression in family caregivers of people with Alzheimer disease: the LASER-AD study. The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry, 13(9), 795-801.
[108] Martin, C., Woods, B., & Williams, S. (2018). Language and Culture in the Caregiving of People with Dementia in Care Homes - What Are the Implications for Well-Being? A Scoping Review with a Welsh Perspective. Journal of Cross-Cultural Gerontology, 34, 67-114.
[109] Vlček, K., & Laczó, J. (2014). Neural correlates of spatial navigation changes in mild cognitive impairment and Alzheimer's disease. Frontiers in behavioral neuroscience, 8, 89.
[110] Lyketsos, C. G., Steele, C., Galik, E., Rosenblatt, A., Steinberg, M., Warren, A., & Sheppard, J. M. (1999). Physical aggression in dementia patients and its relationship to depression. The American journal of psychiatry, 156(1), 66–71 .
[111] Bedrosian, T. A., & Nelson, R. J. (2013). Sundowning syndrome in aging and dementia: research in mouse models. Experimental neurology, 243, 67–73.
[112] Vlček, K., & Laczó, J. (2014). Neural correlates of spatial navigation changes in mild cognitive impairment and Alzheimer's disease. Frontiers in behavioral neuroscience, 8, 89.
[113] 衛生福利部(2024年6月14日)。〈輔具租借、購買及居家無障礙環境改善〉。https://1966.gov.tw/LTC/cp-6453-69940-207.html
[114] 彰化縣政府長期照顧管理中心。(2024)。〈使用長照服務,不需巴氏量表也可以申請外籍看護工了!〉https://care.nccu.idv.tw/news_detail.asp?news_id=665
[115] McDermott, L., & Ebmeier, K. (2009). A meta-analysis of depression severity and cognitive function. Journal of affective disorders, 119 1-3, 1-8 .
[116] Rönnbäck, L., & Hansson, E. (2004). On the potential role of glutamate transport in mental fatigue. Journal of Neuroinflammation, 1, 22 - 22.
[117] Cabrerizo, S., Cuadras, D., Gomez-Busto, F., Artaza-Artabe, I., Marín-Ciancas, F., & Malafarina, V. (2015). Serum albumin and health in older people: Review and meta analysis. Maturitas, 81(1), 17–27.
[118] Wang, Y. N., Hsu, W. C., Yang, P. S., Yao, G., Chiu, Y. C., Chen, S. T., Huang, T. H., & Shyu, Y. L. (2018). Caregiving demands, job demands, and health outcomes for employed family caregivers of older adults with dementia: Structural equation modeling. Geriatric nursing (New York, N.Y.), 39(6), 676–682.
[119] 勞動統計查詢網 (2024年)。https://statfy.mol.gov.tw/statistic_DB.aspx
[120] Laganà, V., Bruno, F., Altomari, N., Bruni, G., Smirne, N., Curcio, S., Mirabelli, M., Colao, R., Puccio, G., Frangipane, F., Cupidi, C., Torchia, G., Muraca, G., Malvaso, A., Addesi, D., Montesanto, A., Di Lorenzo, R., Bruni, A. C., & Maletta, R. (2022). Neuropsychiatric or Behavioral and Psychological Symptoms of Dementia (BPSD): Focus on Prevalence and Natural History in Alzheimer's Disease and Frontotemporal Dementia. Frontiers in Neurology, 13, 832199.
[121] Cipriani, G., Lucetti, C., Nuti, A., & Danti, S. (2014). Wandering and dementia. Psychogeriatrics, 14.
[122] Eaton, C., Tarver, J., Shirazi, A., Pearson, E., Walker, L., Bird, M., Oliver, C., & Waite, J. (2021). A systematic review of the behaviours associated with depression in people with severe-profound intellectual disability.. Journal of intellectual disability research : JIDR.
[123] Joormann, J., & Gotlib, I. (2010). Emotion regulation in depression: Relation to cognitive inhibition. Cognition and Emotion, 24, 281–298.
[124] Rozanski, A., & Cohen, R. (2017). From Vitality to Vital Exhaustion and Other States of "Tense Tiredness": A New Biopsychosocial Risk Domain.. Psychosomatic Medicine.
[125] Kivimäki, M., Shipley, M., Batty, G., Hamer, M., Akbaraly, T., Kumari, M., Jokela, M., Virtanen, M., Lowe, G., Ebmeier, K., Brunner, E., & Singh‐Manoux, A. (2013). Long-term inflammation increases risk of common mental disorder: a cohort study. Molecular Psychiatry, 19, 149 - 150.
[126] 陳雯琪 (2023)。失智症患者孫輩照顧者照顧經驗之研究 (碩士論文)。臺北市立大學,台北市。取自 https://hdl.handle.net/11296/6shm3j
[127] Gao, C., Chapagain, N., & Scullin, M. (2019). Sleep Duration and Sleep Quality in Caregivers of Patients With Dementia. JAMA Network Open, 2.
[128] Nutt, D., Wilson, S., & Paterson, L. (2008). Sleep disorders as core symptoms of depression. Dialogues in Clinical Neuroscience, 10, 329–336.
[129] Fonseca, I., Franco, A., Mendes, R., & Gamito, A. (2021). Management of behavioral and psychological symptoms of dementia. European Psychiatry, 64, S424 - S425.
[130] Wang, Y. N., Hsu, W. C., & Shyu, Y. L. (2020). Job Demands and the Effects on Quality of Life of Employed Family Caregivers of Older Adults With Dementia: A Cross-Sectional Study. The Journal of Nursing Research: JNR, 28(4), e99.
[131] Scullin, M., & Bliwise, D. (2015). Sleep, Cognition, and Normal Aging. Perspectives on Psychological Science, 10, 137–97.
[132] Medic, G., Wille, M., & Hemels, M. (2017). Short- and long-term health consequences of sleep disruption. Nature and Science of Sleep, 9, 151 - 161.
[133] Rockwood, K. (2003). Mixed Dementia: Alzheimer's and Cerebrovascular Disease. International Psychogeriatrics, 15, 39 - 46.
[134] Förstl, H., & Kurz, A. (1999). Clinical features of Alzheimer’s disease. European Archives of Psychiatry and Clinical Neuroscience, 249, 288-290.
[135] Knopman, D. (1998). The initial recognition and diagnosis of dementia.. The American journal of medicine, 104 4A, 2S-12S; discussion 39S-42S .
[136] Orre, I. J., Reinertsen, K. V., Aukrust, P., Dahl, A. A., Fosså, S. D., Ueland, T., & Murison, R. (2011). Higher levels of fatigue are associated with higher CRP levels in disease-free breast cancer survivors. Journal of psychosomatic research, 71(3), 136–141.