研究生: |
陳煒澤 Chen, Wei-Ze |
---|---|
論文名稱: |
聚乙烯亞胺-沸石咪唑骨架/多壁奈米碳管之雙層結構應用於室溫下人體呼氣二氧化碳感測 Application of Polyethylenimine-Zeolitic Imidazolate Framework/Multi-walled Carbon NanoTubes Bilayer Structure for Carbon Dioxide Gas Sensing from Human Breath at Room Temperature |
指導教授: |
戴念華
Tai, Nyan-Hwa 黃金花 Huang, Jin-Hua |
口試委員: |
李紫原
Lee, Chi-Young 彭殿王 Perng, Diahn-Warng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 奈米碳管 、沸石咪唑骨架 、聚乙烯亞胺 、氣體感測器 、二氧化碳 |
外文關鍵詞: | carbon nanotube, zeolitic imidazolate framework, polyethylenimine, gas sensor, carbon dioxide |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究製備了聚乙烯亞胺-沸石咪唑骨架/多壁奈米碳管(Polyethylenimine-
Zeolitic imidazolate framework-8/Multi-walled carbon nanotubes, PEI-ZIF-8 /MWCNTs)之雙層材料,將其運用於人體呼氣之二氧化碳濃度監測,以應用於慢性肺阻塞病患者之病情監控及相關數據之收集。
實驗上首先將MWCNT以噴塗法塗佈於網版印刷碳電極上,作為電子訊號傳輸層,接著合成PEI-ZIF-8複合材料,並再將其噴塗於電極上,運用PEI內富含胺基及ZIF-8的多孔特性,使其對於二氧化碳產生高量吸附之能力,當通入二氧化碳後電極之電阻會產生變化,以此做為判斷二氧化碳濃度之依據。本研究所製備之電極,在室溫環境、相對溼度10%的情況下,對於5 %濃度之二氧化碳(正常人呼氣之二氧化碳濃度),可達5.29%之響應值(Response),且在2.5%~12.5%之二氧化碳濃度區間內,訊號隨二氧化碳濃度增加呈現線性正相關之關係,顯示其對於二氧化碳濃度具有良好之判斷能力,在多次測試下也呈現穩定之響應訊號,在人體實際呼氣的狀況下也呈現良好的感測表現。
本研究之電極及材料製備方法簡單、成本低廉,可直接於室溫環境下使用,且具有非侵入性、能簡易使用之特性,對於臨床醫學監測人體呼氣二氧化碳濃度之應用具極大的潛力。
In this study, a polyethyleneimine-zeolitic imidazolate framework/multi-walled carbon nanotubes (PEI-ZIF-8/MWCNTs) double-layer electrode is prepared and applied to monitor the concentration of carbon dioxide (CO2) in human breath, aiming to monitor the physical health of patients with chronic obstructive pulmonary disease. In experiment, MWCNTs, used as the electron transport layer, are first coated on the screen-printed electrode by spray coating, and then the PEI-ZIF-8 solution is synthesized and sprayed on the electrode as the CO2 adsorption layer. The electrode with rich amine groups in PEI and the porous characteristics of ZIF-8 results in good ability to absorb CO2. The resistance varied in the presence of CO2 is used to determine the CO2 concentration. The sensor prepared in this work can reach an average response of 5.29% under 5% CO2 and 10% relative humidity at room temperature (RT). In addition, the response shows good linear relationship versus CO2 concentration in the range from 2.5% to 12.5%. In human breath test, the sensors also show good sensing behavior. The preparation of sensors and materials in this study are simple, low-cost, and the sensor possesses the characteristics of operation at RT, non-invasive and easy to use. The uniqueness of the electrode shows great potential for the application of clinical research to monitor the CO2 concentration of human breath.
[1] The top 10 causes of death. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
[2] M.Y. Rezk, J. Sharma, and M.R. Gartia, "Nanomaterial-Based CO2 Sensors". Nanomaterials, (2020). 10(11): p. 2251.
[3] C.K. Rhee, N.Q. Chau, F. Yunus, K. Matsunaga, D.-W. Perng, and o.b.t.C.A.o.t. APSR, "Management of COPD in Asia: A position statement of the Asian Pacific Society of Respirology". Respirology, (2019). 24(10): p. 1018-1025.
[4] A.J.A. McGuinness and E. Sapey, "Oxidative stress in COPD: sources, markers, and potential mechanisms". Journal of clinical medicine, (2017). 6(2): p. 21.
[5] GOLD Global strategy for the diagnosis, management and prevention of Chronic Obstructive Pulmonary Disease. 2021.
[6] P.J. Barnes, "Inflammatory mechanisms in patients with chronic obstructive pulmonary disease". Journal of Allergy and Clinical Immunology, (2016). 138(1): p. 16-27.
[7] P.J. Barnes, P.G.J. Burney, E.K. Silverman, B.R. Celli, J. Vestbo, J.A. Wedzicha, and E.F.M. Wouters, "Chronic obstructive pulmonary disease". Nature Reviews Disease Primers, (2015). 1(1): p. 15076.
[8] P.A. Kirkham and P.J. Barnes, "Oxidative stress in COPD". Chest, (2013). 144(1): p. 266-273.
[9] V. Cukic, "The changes of arterial blood gases in COPD during four-year period". Medical Archives, (2014). 68(1): p. 14.
[10] A. Agusti, A. Noguera, J. Sauleda, E. Sala, J. Pons, and X. Busquets, "Systemic effects of chronic obstructive pulmonary disease". European Respiratory Journal, (2003). 21(2): p. 347-360.
[11] L.-W. Hang, J.-Y. Hsu, C.-J. Chang, H.-C. Wang, S.-L. Cheng, C.-H. Lin, M.-C. Chan, C.-C. Wang, D.-W. Perng, and C.-J. Yu, "Predictive factors warrant screening for obstructive sleep apnea in COPD: a Taiwan National Survey". International journal of chronic obstructive pulmonary disease, (2016). 11: p. 665.
[12] T.M. McKeever, G. Hearson, G. Housley, C. Reynolds, W. Kinnear, T.W. Harrison, A.-M. Kelly, and D.E. Shaw, "Using venous blood gas analysis in the assessment of COPD exacerbations: a prospective cohort study". Thorax, (2016). 71(3): p. 210-215.
[13] S. Iijima, "Helical microtubules of graphitic carbon". nature, (1991). 354(6348): p. 56-58.
[14] S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter". nature, (1993). 363(6430): p. 603-605.
[15] N. Grobert, "Carbon nanotubes–becoming clean". Materials today, (2007). 10(1-2): p. 28-35.
[16] E. Abbasi, A. Akbarzadeh, M. Kouhi, and M. Milani, "Graphene: synthesis, bio-applications, and properties". Artificial cells, nanomedicine, and biotechnology, (2016). 44(1): p. 150-156.
[17] M. Endo, T. Hayashi, Y. Ahm Kim, M. Terrones, and M.S. Dresselhaus, "Applications of carbon nanotubes in the twenty–first century". Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, (2004). 362(1823): p. 2223-2238.
[18] P. Ajayan and T. Ebbesen, "Nanometre-size tubes of carbon". Reports on Progress in Physics, (1997). 60(10): p. 1025.
[19] M.N. Norizan, M.H. Moklis, S.Z.N. Demon, N.A. Halim, A. Samsuri, I.S. Mohamad, V.F. Knight, and N. Abdullah, "Carbon nanotubes: functionalisation and their application in chemical sensors". RSC Advances, (2020). 10(71): p. 43704-43732.
[20] M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, and T. Shimizu, "Measuring the thermal conductivity of a single carbon nanotube". Physical review letters, (2005). 95(6): p. 065502.
[21] P.G. Collins and P. Avouris, "Nanotubes for electronics". Scientific american, (2000). 283(6): p. 62-69.
[22] R. Rao, C.L. Pint, A.E. Islam, R.S. Weatherup, S. Hofmann, E.R. Meshot, F. Wu, C. Zhou, N. Dee, and P.B. Amama, "Carbon nanotubes and related nanomaterials: critical advances and challenges for synthesis toward mainstream commercial applications". ACS nano, (2018). 12(12): p. 11756-11784.
[23] Y. Saito and S. Uemura, "Field emission from carbon nanotubes and its application to electron sources". Carbon, (2000). 38(2): p. 169-182.
[24] E.T. Thostenson, Z. Ren, and T.-W. Chou, "Advances in the science and technology of carbon nanotubes and their composites: a review". Composites science and technology, (2001). 61(13): p. 1899-1912.
[25] A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, and S.W. Joo, "Carbon nanotubes: properties, synthesis, purification, and medical applications". Nanoscale research letters, (2014). 9(1): p. 1-13.
[26] N. Tai, H. Chen, Y. Chen, P. Hsieh, J. Liang, and T. Chou, "Optimization of processing parameters of the chemical vapor deposition process for synthesizing high-quality single-walled carbon nanotube fluff and roving". Composites science and technology, (2012). 72(15): p. 1855-1862.
[27] A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’keeffe, and O.M. Yaghi, "Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks". (2009).
[28] Y.-R. Lee, M.-S. Jang, H.-Y. Cho, H.-J. Kwon, S. Kim, and W.-S. Ahn, "ZIF-8: A comparison of synthesis methods". Chemical Engineering Journal, (2015). 271: p. 276-280.
[29] S. Gadipelli, W. Travis, W. Zhou, and Z. Guo, "A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO 2 uptake". Energy & Environmental Science, (2014). 7(7): p. 2232-2238.
[30] K. Zhou, B. Mousavi, Z. Luo, S. Phatanasri, S. Chaemchuen, and F. Verpoort, "Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67". Journal of Materials Chemistry A, (2017). 5(3): p. 952-957.
[31] B. Chen, Z. Yang, Y. Zhu, and Y. Xia, "Zeolitic imidazolate framework materials: recent progress in synthesis and applications". Journal of Materials Chemistry A, (2014). 2(40): p. 16811-16831.
[32] X. Gong, Y. Wang, and T. Kuang, "ZIF-8-based membranes for carbon dioxide capture and separation". ACS Sustainable Chemistry & Engineering, (2017). 5(12): p. 11204-11214.
[33] E.-X. Chen, H. Yang, and J. Zhang, "Zeolitic imidazolate framework as formaldehyde gas sensor". Inorganic chemistry, (2014). 53(11): p. 5411-5413.
[34] D. Matatagui, A. Sainz-Vidal, I. Gràcia, E. Figueras, C. Cané, and J. Saniger, "Chemoresistive gas sensor based on ZIF-8/ZIF-67 nanocrystals". Sensors and Actuators B: Chemical, (2018). 274: p. 601-608.
[35] H. Tian, H. Fan, M. Li, and L. Ma, "Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor". ACS sensors, (2016). 1(3): p. 243-250.
[36] K.-J. Kim, P. Lu, J.T. Culp, and P.R. Ohodnicki, "Metal–organic framework thin film coated optical fiber sensors: a novel waveguide-based chemical sensing platform". ACS sensors, (2018). 3(2): p. 386-394.
[37] Frey H. & R. Haag. "Hyperbranched polymers in industry" In: Cahn R.H., Buschow K.H.J., Flemings M.C., Ilschner B., Kramer E.J. and Majahan. S. Encyclopedia of Materials: Science and Technology. Elsevier Science Ltd, Oxford,(2001) pp. 3997–4000.
[38] X. Zhang, D. Lin, and W. Chen, "Nitrogen-doped porous carbon prepared from a liquid carbon precursor for CO 2 adsorption". RSC advances, (2015). 5(56): p. 45136-45143.
[39] Y. Li and D. Ju, The application, neurotoxicity, and related mechanism of cationic polymers, in Neurotoxicity of nanomaterials and nanomedicine. 2017, Elsevier. p. 285-329.
[40] J.J. Virgen-Ortíz, J.C.S. dos Santos, Á. Berenguer-Murcia, O. Barbosa, R.C. Rodrigues, and R. Fernandez-Lafuente, "Polyethylenimine: a very useful ionic polymer in the design of immobilized enzyme biocatalysts". Journal of Materials Chemistry B, (2017). 5(36): p. 7461-7490.
[41] D.M. D'Alessandro, B. Smit, and J.R. Long, "Carbon dioxide capture: prospects for new materials". Angewandte Chemie International Edition, (2010). 49(35): p. 6058-6082.
[42] X. Shen, H. Du, R.H. Mullins, and R.R. Kommalapati, "Polyethylenimine applications in carbon dioxide capture and separation: from theoretical study to experimental work". Energy Technology, (2017). 5(6): p. 822-833.
[43] A.M. Varghese and G.N. Karanikolos, "CO2 capture adsorbents functionalized by amine–bearing polymers: A review". International Journal of Greenhouse Gas Control, (2020). 96: p. 103005.
[44] T.-V. Dinh, I.-Y. Choi, Y.-S. Son, and J.-C. Kim, "A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction". Sensors and Actuators B: Chemical, (2016). 231: p. 529-538.
[45] H. Nazemi, A. Joseph, J. Park, and A. Emadi, "Advanced micro-and nano-gas sensor technology: A review". Sensors, (2019). 19(6): p. 1285.
[46] A. Dey, "Semiconductor metal oxide gas sensors: A review". Materials Science and Engineering: B, (2018). 229: p. 206-217.
[47] H. Bai and G. Shi, "Gas sensors based on conducting polymers". Sensors, (2007). 7(3): p. 267-307.
[48] Z. Xiao, L.B. Kong, S. Ruan, X. Li, S. Yu, X. Li, Y. Jiang, Z. Yao, S. Ye, and C. Wang, "Recent development in nanocarbon materials for gas sensor applications". Sensors and Actuators B: Chemical, (2018). 274: p. 235-267.
[49] S.-J. Young and Z.-D. Lin, "Sensing performance of carbon dioxide gas sensors with carbon nanotubes on plastic substrate". ECS Journal of Solid State Science and Technology, (2017). 6(5): p. M72.
[50] M. Han, D. Jung, and G.S. Lee, "Palladium-nanoparticle-coated carbon nanotube gas sensor". Chemical Physics Letters, (2014). 610: p. 261-266.
[51] C. Hua, Y. Shang, Y. Wang, J. Xu, Y. Zhang, X. Li, and A. Cao, "A flexible gas sensor based on single-walled carbon nanotube-Fe2O3 composite film". Applied Surface Science, (2017). 405: p. 405-411.
[52] A.S. Alshammari, M.R. Alenezi, K. Lai, and S. Silva, "Inkjet printing of polymer functionalized CNT gas sensor with enhanced sensing properties". Materials Letters, (2017). 189: p. 299-302.
[53] 謝秉烜, 利用濺鍍法沉積奈米金顆粒於三維發泡石墨烯表面並探討其在室溫下氨氣濃度感測之應用,材料科學工程系. (2015), 國立清華大學.
[54] 徐漫齡, 製備三維奈米金顆粒/發泡石墨烯複合材料並應用於室溫下氨氣之感測, 材料科學工程系. (2016), 國立清華大學.
[55] 林正傑, 聚乙烯亞胺-聚乙二醇/多壁奈米碳管之雙層結構應用於室溫下二氧化碳之監測, 材料科學工程系. (2019), 國立清華大學.
[56] 范韻如, 碳酸鈉/改質氧化石墨烯應用於室溫人體呼氣二氧化碳之感測器, 材料科學工程系. (2020), 國立清華大學.
[57] M. Elkashef, K. Wang, and M. Abou-Zeid, "Acid-treated carbon nanotubes and their effects on mortar strength". Frontiers of Structural and Civil Engineering, (2016). 10(2): p. 180-188.
[58] C. Jiao, Z. Li, X. Li, M. Wu, and H. Jiang, "Improved CO2/N2 separation performance of Pebax composite membrane containing polyethyleneimine functionalized ZIF-8". Separation and Purification Technology, (2021). 259: p. 118190.
[59] S. Brunauer, P.H. Emmett, and E. Teller, "Adsorption of gases in multimolecular layers". Journal of the American chemical society, (1938). 60(2): p. 309-319.
[60] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K.S. Sing, "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)". Pure and applied chemistry, (2015). 87(9-10): p. 1051-1069.
[61] T. Horikawa, D. Do, and D. Nicholson, "Capillary condensation of adsorbates in porous materials". Advances in colloid and interface science, (2011). 169(1): p. 40-58.
[62] M. Farbod, S.K. Tadavani, and A. Kiasat, "Surface oxidation and effect of electric field on dispersion and colloids stability of multiwalled carbon nanotubes". Colloids and Surfaces A: Physicochemical and Engineering Aspects, (2011). 384(1-3): p. 685-690.
[63] N.O. Ramoraswi and P.G. Ndungu, "Photo-catalytic properties of TiO 2 supported on MWCNTs, SBA-15 and silica-coated MWCNTs nanocomposites". Nanoscale research letters, (2015). 10(1): p. 1-16.
[64] A.M. Rao, E. Richter, S. Bandow, B. Chase, P. Eklund, K. Williams, S. Fang, K. Subbaswamy, M. Menon, and A. Thess, "Diameter-selective Raman scattering from vibrational modes in carbon nanotubes". Science, (1997). 275(5297): p. 187-191.
[65] Y. Pan, L. Li, S.H. Chan, and J. Zhao, "Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending". Composites Part A: Applied Science and Manufacturing, (2010). 41(3): p. 419-426.
[66] P. Nie, C. Min, H.-J. Song, X. Chen, Z. Zhang, and K. Zhao, "Preparation and tribological properties of polyimide/carboxyl-functionalized multi-walled carbon nanotube nanocomposite films under seawater lubrication". Tribology Letters, (2015). 58(1): p. 1-12.
[67] S.-T. Kang, J.-Y. Seo, and S.-H. Park, "The characteristics of CNT/cement composites with acid-treated MWCNTs". Advances in materials science and engineering, (2015). 2015.
[68] J.E. Ellis, Z. Zeng, S.I. Hwang, S. Li, T.-Y. Luo, S.C. Burkert, D.L. White, N.L. Rosi, J.J. Gassensmith, and A. Star, "Growth of ZIF-8 on molecularly ordered 2-methylimidazole/single-walled carbon nanotubes to form highly porous, electrically conductive composites". Chemical science, (2019). 10(3): p. 737-742.
[69] J.J. Beh, J.K. Lim, E.P. Ng, and B.S. Ooi, "Synthesis and size control of zeolitic imidazolate framework-8 (ZIF-8): From the perspective of reaction kinetics and thermodynamics of nucleation". Materials Chemistry and Physics, (2018). 216: p. 393-401.
[70] Y. Gao, Z. Qiao, S. Zhao, Z. Wang, and J. Wang, "In situ synthesis of polymer grafted ZIFs and application in mixed matrix membrane for CO2 separation". Journal of Materials Chemistry A, (2018). 6(7): p. 3151-3161.
[71] H. Tao, H. Yang, X. Liu, J. Ren, Y. Wang, and G. Lu, "Highly stable hierarchical ZSM-5 zeolite with intra-and inter-crystalline porous structures". Chemical engineering journal, (2013). 225: p. 686-694.
[72] M. Thommes, "Physical adsorption characterization of nanoporous materials". Chemie Ingenieur Technik, (2010). 82(7): p. 1059-1073.
[73] Y. Pan, Y. Liu, G. Zeng, L. Zhao, and Z. Lai, "Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system". Chemical Communications, (2011). 47(7): p. 2071-2073.
[74] M. Tu, C. Wiktor, C. Rösler, and R.A. Fischer, "Rapid room temperature syntheses of zeolitic-imidazolate framework (ZIF) nanocrystals". Chemical Communications, (2014). 50(87): p. 13258-13260.
[75] M. Shim, A. Javey, N.W. Shi Kam, and H. Dai, "Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors". Journal of the American Chemical Society, (2001). 123(46): p. 11512-11513.
[76] B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, and J.R. Gong, "Controllable N-doping of graphene". Nano letters, (2010). 10(12): p. 4975-4980.
[77] S.S. Sabri, J. Guillemette, A. Guermoune, M. Siaj, and T. Szkopek, "Enhancing gas induced charge doping in graphene field effect transistors by non-covalent functionalization with polyethyleneimine". Applied Physics Letters, (2012). 100(11): p. 113106.
[78] M. Son, Y. Pak, S.-S. Chee, F.M. Auxilia, K. Kim, B.-K. Lee, S. Lee, S.K. Kang, C. Lee, and J.S. Lee, "Charge transfer in graphene/polymer interfaces for CO 2 detection". Nano Research, (2018). 11(7): p. 3529-3536.