簡易檢索 / 詳目顯示

研究生: 曾天生
Tseng, Tien-Sheng
論文名稱: 果蠅 Crammer 蛋白之結構功能與特定胺基酸註解分析
Structure, Function and Residue-Specific Annotation of Drosophila melanogaster Crammer
指導教授: 呂平江
Lyu, Ping-Chiang
口試委員: 陳金榜
Chen, Chin-Pan
張大慈
Chang, Dah-Tsyr
蘇士哲
Sue, Shih-Che
徐尚德
Hsu, Shang-Te Danny
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 133
中文關鍵詞: 果蠅類第二型細胞毒性T淋巴抗原半胱胺酸蛋白脢長期記憶蛋白質結構折疊特定點突變二聚體支鍊鹽橋
外文關鍵詞: Crammer, Cathepsin, Long-term memory, Propeptide-like protease inhibitor, Molten globule, Alanine scanning, Hydrophobic core, Human cathepsin, Molten globule-to-ordered structure transition of crammer propeptide-like cysteine, Protease inhibitor, Prosegment binding loop (PBL)
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 果蠅類第二型細胞毒性T淋巴抗原(CTLA-2-like),又名Crammer,為一79個胺基酸蛋白質(分子量約9.5 kDa)。其蛋白質序列與某些半胱胺酸蛋白脢(Cathepsins)的前段序列(proregions)有高度相似性,意謂Crammer聚有與半胱胺酸蛋白脢的前段序列相似功能(抑制蛋白脢活性)。相關文獻指出Crammer是建立果蠅長期記憶的主要因子之一,可能是藉由其調控Cathepsins的活性來控制長期記憶的形成,但詳細的機制仍然未知。在本研究中,藉由利用生物化學以及生物物理的方法來探討Crammer和Cathepsins之間的相互關係,更利用特定點突變的方法研究結構上特定胺基酸對於Crammer抑制半胱胺酸蛋白脢的重要性、結構穩定性、以及對於整個Crammer蛋白質結構折疊上的影響。實驗結果顯示,Crammer在不同的pH環境下聚有單體與二聚體的狀態。在中性與偏鹼性pH下,Crammer以一對分子間雙硫鍵所構成的二聚體存在 然而,在酸性環境下,則是以單體的狀態存在。活性抑制分析的結果顯示,單體Crammer能抑制果蠅的Cathepsins,而二聚體則無抑制的活性。此外,Crammer在酸性的環境下是以熔球體(molten globule)的狀態存在,此環境類似於Crammer可能所處的溶脢體 (lysosome)的生理環境。然而,當與Cathepsin L結合後,Crammer的蛋白質構型會從熔球體轉變成一個穩定且摺疊完整的單體結構。在核磁共振光譜結果指出,突變種C72S於pH 6.0下的HSQC圖譜高度相似於與Cathepsin L形成複合體Crammer的HSQC圖譜。因此,我們解出C72S的結構,也是第一個類前段序列蛋白脢抑制劑(propeptide-like protease inhibitor)的蛋白質結構。另外,特定點突變研究結果顯示具,將疏水核心區(hydrophobic cores)的芳香族胺基酸(W9, Y12, F16, Y20, Y32, W53)以及構成支鍊鹽橋(salt-bridges)的帶電性胺基酸 (E8, R28, R29, E67)以丙胺酸取代後,會大幅降低Crammer抑制果蠅 Cathepsin B的活性。同時,圓二色光譜、自身螢光分析(intrinsic fluorescence)與核磁共振的結果指出,移除芳香環以及帶電胺基酸的側鏈,會明顯影響pH值依賴性螺旋的形成(pH-dependent helix formation)、降低熱穩定性並且破壞Crammer結構的摺疊(molten globule-to-ordered structure transition)。此外,我們也發現W53在Crammer與Cathepsin B結合的交互作用上扮演了重要的角色,及R28與E67所形成的鹽橋對於
    螺旋確切地結合在Cathepsin B活化位有重要的貢獻。


    Drosophila melanogaster crammer is a novel cathepsin inhibitor that is involved in long-term memory (LTM) formation. The mechanism by which the inhibitory activity is regulated remains unclear. Here we have shown that at neutral pH, crammer is predominantly dimeric in vitro as a result of disulfide bond formation, and is monomeric at acidic pH. Our inhibition assay shows that monomeric crammer is a strong competitive inhibitor of cathepsin L. Crammer is a monomeric molten globule in acidic solution, upon binding to cathepsin L; however, crammer undergoes a molten globule-to-ordered structural transition. Using high-resolution NMR spectroscopy, we have shown that the C72S variant renders crammer monomeric at pH 6.0 and that the structure of the C72S variant highly resembles that of wild-type crammer in complex with cathepsin L at pH 4.0. We have determined the first solution structure of a propeptide-like protease inhibitor in its active form and examined in detail using a variety of spectroscopic methods the folding properties of crammer in order to delineate its biomolecular recognition of cathepsin. In addition, alanine substitution for the aromatic residues W9, Y12, F16, Y20, Y32, and W53 within the hydrophobic cores, and charged residues E8, R28, R29, and E67 in the salt bridges considerably decrease the ability of crammer to inhibit Drosophila cathepsin B (CTSB). Far-UV circular dichroism (CD), intrinsic fluorescence and nuclear magnetic resonance (NMR) spectroscopies show that the removal of most the aromatic and charged side-chains substantially reduce the thermostability, alter pH-dependent helix formation, and disrupt the molten globule-to-ordered structure transition. Molecular modeling indicates that W53 is essential for the interaction between crammer and CTSB; the salt bridge R28-E67 is critical for the appropriate alignment of the -helix 4 towards the CTSB active cleft. Alanine scanning provides detailed residue-specific dissection of folding transition and functional contributions of the hydrophobic cores and salt bridges of crammer, and these insights could serve as a template for further development of therapeutic inhibitors against cathepsins.

    Contents Abbreviations………………………………………………………………...1-2 Keywords……………………………………………………………….............2 Abstract in Chinese…………………………………………………………….3 Abstract………………………………………………………………………....4 Chapter I. Introduction 1.1 Crammer and cysteine protease (cathepsins) 1.1.1 Long-term memory and crammer…………………………................5-7 1.1.2 Cysteine protease (cathepsin) and propeptide-like protease inhibitor.8 1.1.3 Human cathepsins and diseases…………………………………………8 1.1.4 Cathepsin B, L and Alzheimer’s disease……………………………8-10 1.1.5 Mutagenesis study of cathepsin propeptides………………………….10 1.1.6 The theme of this thesis……………………………………………..10-11 1.2 Protein Folding 1.2.1 Molten globule (MG)………………………………………………..11-13 1.3 Principles of biophysical tools 1.3.1 Circular Dichroism (CD)…………………………………………...13-14 1.3.2 Fluorescence 1.3.2.1 Intrinsic Fluorescence ……………………………………………15-17 1.3.2.2 ANS Fluorescence…………………………………………………17-19 1.4 Principles of Enzymatic Kinetics 1.4.1 Types of reversible inhibitors………………………………………19-21 1.4.1.1 Competitive inhibition………………………………………………..20 1.4.1.2 Uncompetitive inhibition……………………………………………..20 1.4.1.3 Non-competitive inhibition…………………………………………...20 1.4.1.4 Mixed inhibition………………………………………………………21 1.4.2 The determination of enzyme inhibitor constants………………21-22 1.5 Figures…………………………………………………………………23-28 1.6 Table ………………………………………………………………………29 Chapter II. Experimental Procedures 2.1 Materials………………………………………………………..................31 2.2 Methods 2.2.1 Protein expression and purification of WT crammer and mutants……………………………………………………………...31-32 2.2.2 MALDI-TOF MASS analysis………………………………………….32 2.2.3 Tricine-SDS-PAGE……………………………………………………..33 2.2.4 Quantification of protein concentration………………………………33 2.2.5 Expression and purification of Drosophila cathepsin B…………34-35 2.2.6 Quantification of cathepsin protein concentration by E64…………..35 2.2.7 Characterization of the oligomeric States of crammer……………….35 2.2.8 Isolation of monomeric and dimeric forms of crammer……………..36 2.2.9 Spectroscopic characterization of wild-type crammer………………36 2.2.10 NMR spectroscopy of wild-type crammer…………………….....37-38 2.2.11 Solution structure determination……………………………………38 2.2.12 Isolation of cathepsin L from Drosophila melanogaster and Inhibition Assay…………………………………………………...38-39 2.2.13 Inhibitory mechanism……………………………………………..39-40 2.2.14 Far-UV CD and fluorescence spectroscopy experiments of mutant proteins………………………………………………………………...40 2.2.15 Heteronuclear 1H-15N HSQC NMR experiments of mutant protein……………………………………………………………...40-41 2.2.16 Molecular modeling and docking…………………………………….41 2.3 Figures....................................................................................................42-45 2.4 Tables......................................................................................................46-47 Chapter III. Characterization of Crammer and its Potential Role in Cathepsin Regulation 3.1 Results 3.1.1 Oligomeric state of crammer……………………………………….….49 3.1.2 Inhibitory assay …………………………………………………….49-50 3.1.3 Structural characterization ………………………………………...50-51 3.1.4 Protein folding…………………………………………………….....51-53 3.1.5 Solution structure of C72S………………………………………….53-54 3.1.6 Molecular modeling and docking ……………………………………..55 3.2 Discussion……………………………………………………………...56-58 3.3 Figures…………………………………………………………………59-84 3.4 Tables…………………………………………………………………. 85-86 Chapter IV. Residue-specific annotation of disorder-to-order transition and cathepsin inhibition of crammer 4.1 Results 4.1.1 Inhibition of Drosophila CTSB by the various crammer mutants…..87 4.1.2 CD Spectroscopy of crammer alanine mutants 4.1.2.1 Secondary Structure Content…………………………………….87-88 4.1.2.2 Thermostability. …………………………………………………..88-89 4.1.3 Intrinsic fluorescence of the crammer mutants…………………...89-90 4.1.4 1H-15N HSQC NMR Spectroscopy ………………………………...91-92 4.2 Discussion……………………………………………………………...92-95 4.3 Conclusion……………………………………………………………..95-96 4.4 Figures………………………………………………………………..97-119 4.5 Tables………………………………………………………………..120-125 Reference………………………………………………………………..126-131 Appendix I. inhibition mechanisms directed against cysteine proteases...133

    Reference
    1. Kimble, G. A., Leonard, T. B., 3rd, and Perlmuter, L. C. (1968) Journal of experimental psychology 77, 652-660
    2. Pavlov, I. P. (1927)
    3. Qunin, W. G. a. G., R. J. (1984) Annun Rev Neurosci 7, 67-93
    4. Tully, T. (1987) Trends in neurosciences 10, 330-334
    5. Davis, R. L. (1996) Physiological reviews 76, 299-317
    6. Waddell, S., and Quinn, W. G. (2001) Annual review of neuroscience 24, 1283-1309
    7. Quinn, W. G., Harris, W. A., and Benzer, S. (1974) Proceedings of the National Academy of Sciences of the United States of America 71, 708-712
    8. Tully, T., and Quinn, W. G. (1985) Journal of comparative physiology. A, Sensory, neural, and behavioral physiology 157, 263-277
    9. Tully, T., Preat, T., Boynton, S. C., and Del Vecchio, M. (1994) Cell 79, 35-47
    10. DeZazzo, J., and Tully, T. (1995) Trends in neurosciences 18, 212-218
    11. Davis, R. L. (2005) Annu Rev Neurosci 28, 275-302
    12. Keene, A. C., and Waddell, S. (2007) Nat Rev Neurosci 8, 341-354
    13. Comas, D., Petit, F., and Preat, T. (2004) Nature 430, 460-463
    14. Krashes, M. J., and Waddell, S. (2008) J Neurosci 28, 3103-3113
    15. Jerala, R., Zerovnik, E., Kidric, J., and Turk, V. (1998) J Biol Chem 273, 11498-11504
    16. Denizot, F., Brunet, J. F., Roustan, P., Harper, K., Suzan, M., Luciani, M. F., Mattei, M. G., and Golstein, P. (1989) Eur J Immunol 19, 631-635
    17. Delaria, K., Fiorentino, L., Wallace, L., Tamburini, P., Brownell, E., and Muller, D. (1994) J Biol Chem 269, 25172-25177
    18. Kurata, M., Hirata, M., Watabe, S., Miyake, M., Takahashi, S. Y., and Yamamoto, Y. (2003) Protein Expr Purif 32, 119-125
    19. Yamamoto, Y., Watabe, S., Kageyama, T., and Takahashi, S. Y. (1999) FEBS Lett 448, 257-260
    20. Yamamoto, Y., Watabe, S., Kageyama, T., and Takahashi, S. Y. (1999) Arch Insect Biochem Physiol 42, 119-129
    21. Kurata, M., Yamamoto, Y., Watabe, S., Makino, Y., Ogawa, K., and Takahashi, S. Y. (2001) J Biochem 130, 857-863
    22. Giot, L., Bader, J. S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y. L., Ooi, C. E., Godwin, B., Vitols, E., Vijayadamodar, G., Pochart, P., Machineni, H., Welsh, M., Kong, Y., Zerhusen, B., Malcolm, R., Varrone, Z., Collis, A., Minto, M., Burgess, S., McDaniel, L., Stimpson, E., Spriggs, F., Williams, J., Neurath, K., Ioime, N., Agee, M., Voss, E., Furtak, K., Renzulli, R., Aanensen, N., Carrolla, S., Bickelhaupt, E., Lazovatsky, Y., DaSilva, A., Zhong, J., Stanyon, C. A., Finley, R. L., Jr., White, K. P., Braverman, M., Jarvie, T., Gold, S., Leach, M., Knight, J., Shimkets, R. A., McKenna, M. P., Chant, J., and Rothberg, J. M. (2003) Science 302, 1727-1736
    23. Deshapriya, R. M., Takeuchi, A., Shirao, K., Isa, K., Watabe, S., Murakami, R., Tsujimura, H., and Yamamoto, Y. (2007) Zoolog Sci 24, 21-30
    24. Hanewinkel, H., Glossl, J., and Kresse, H. (1987) J Biol Chem 262, 12351-12355
    25. Tao, K., Stearns, N. A., Dong, J., Wu, Q. L., and Sahagian, G. G. (1994) Arch Biochem Biophys 311, 19-27
    26. Groves, M. R., Coulombe, R., Jenkins, J., and Cygler, M. (1998) Proteins 32, 504-514
    27. Nishimura, Y., Kawabata, T., and Kato, K. (1988) Arch Biochem Biophys 261, 64-71
    28. Rowan, A. D., Mason, P., Mach, L., and Mort, J. S. (1992) J Biol Chem 267, 15993-15999
    29. Khan, A. R., and James, M. N. (1998) Protein Sci 7, 815-836
    30. Vernet, T., Berti, P. J., de Montigny, C., Musil, R., Tessier, D. C., Menard, R., Magny, M. C., Storer, A. C., and Thomas, D. Y. (1995) J Biol Chem 270, 10838-10846
    31. McIntyre, G. F., Godbold, G. D., and Erickson, A. H. (1994) J Biol Chem 269, 567-572
    32. Wiederanders, B., Kaulmann, G., and Schilling, K. (2003) Curr Protein Pept Sci 4, 309-326
    33. Rawlings, N. D., and Barrett, A. J. (1994) Methods in enzymology 244, 461-486
    34. Berti, P. J., and Storer, A. C. (1995) Journal of molecular biology 246, 273-283
    35. Buhling, F., Fengler, A., Brandt, W., Welte, T., Ansorge, S., and Nagler, D. K. (2000) Adv Exp Med Biol 477, 241-254
    36. Gelb, B. D., Shi, G. P., Chapman, H. A., and Desnick, R. J. (1996) Science 273, 1236-1238
    37. Inui, T., Ishibashi, O., Inaoka, T., Origane, Y., Kumegawa, M., Kokubo, T., and Yamamura, T. (1997) J Biol Chem 272, 8109-8112
    38. Mort, J. S., Recklies, A. D., and Poole, A. R. (1984) Arthritis Rheum 27, 509-515
    39. Reiser, J., Adair, B., and Reinheckel, T. (2010) J Clin Invest 120, 3421-3431
    40. Zhang, L., Sheng, R., and Qin, Z. (2009) Acta biochimica et biophysica Sinica 41, 437-445
    41. Mantle, D., Falkous, G., Ishiura, S., Perry, R. H., and Perry, E. K. (1995) Journal of the neurological sciences 131, 65-70
    42. Ii, K., Ito, H., Kominami, E., and Hirano, A. (1993) Virchows Archiv. A, Pathological anatomy and histopathology 423, 185-194
    43. Turk, B. (2006) Nat Rev Drug Discov 5, 785-799
    44. Jilkova, A., Rezacova, P., Lepsik, M., Horn, M., Vachova, J., Fanfrlik, J., Brynda, J., McKerrow, J. H., Caffrey, C. R., and Mares, M. (2011) J Biol Chem 286, 35770-35781
    45. Vasiljeva, O., Reinheckel, T., Peters, C., Turk, D., Turk, V., and Turk, B. (2007) Curr Pharm Des 13, 387-403
    46. Thompson, S. K., Halbert, S. M., DesJarlais, R. L., Tomaszek, T. A., Levy, M. A., Tew, D. G., Ijames, C. F., and Veber, D. F. (1999) Bioorg Med Chem 7, 599-605
    47. Katunuma, N., Tsuge, H., Nukatsuka, M., Asao, T., and Fukushima, M. (2002) Arch Biochem Biophys 397, 305-311
    48. Turk, D., and Guncar, G. (2003) Acta crystallographica. Section D, Biological crystallography 59, 203-213
    49. Ahn, N. G., and Resing, K. A. (2005) Science 308, 1266-1267
    50. Markt, P., McGoohan, C., Walker, B., Kirchmair, J., Feldmann, C., De Martino, G., Spitzer, G., Distinto, S., Schuster, D., Wolber, G., Laggner, C., and Langer, T. (2008) J Chem Inf Model 48, 1693-1705
    51. Ravikumar, M., Pavan, S., Bairy, S., Pramod, A. B., Sumakanth, M., Kishore, M., and Sumithra, T. (2008) Chem Biol Drug Des 72, 79-90
    52. Huo, S., Wang, J., Cieplak, P., Kollman, P. A., and Kuntz, I. D. (2002) J Med Chem 45, 1412-1419
    53. Hook, V. Y. (2006) Biological chemistry 387, 1429-1439
    54. Nakanishi, H., Tominaga, K., Amano, T., Hirotsu, I., Inoue, T., and Yamamoto, K. (1994) Experimental neurology 126, 119-128
    55. Haque, A., Banik, N. L., and Ray, S. K. (2008) CNS & neurological disorders drug targets 7, 270-277
    56. Funkelstein, L., Beinfeld, M., Minokadeh, A., Zadina, J., and Hook, V. (2010) Neuropeptides 44, 457-466
    57. Yasothornsrikul, S., Greenbaum, D., Medzihradszky, K. F., Toneff, T., Bundey, R., Miller, R., Schilling, B., Petermann, I., Dehnert, J., Logvinova, A., Goldsmith, P., Neveu, J. M., Lane, W. S., Gibson, B., Reinheckel, T., Peters, C., Bogyo, M., and Hook, V. (2003) Proceedings of the National Academy of Sciences of the United States of America 100, 9590-9595
    58. Funkelstein, L., Toneff, T., Hwang, S. R., Reinheckel, T., Peters, C., and Hook, V. (2008) Journal of neurochemistry 106, 384-391
    59. Funkelstein, L., Toneff, T., Mosier, C., Hwang, S. R., Beuschlein, F., Lichtenauer, U. D., Reinheckel, T., Peters, C., and Hook, V. (2008) The Journal of biological chemistry 283, 35652-35659
    60. Hook, V., Funkelstein, L., Lu, D., Bark, S., Wegrzyn, J., and Hwang, S. R. (2008) Annual review of pharmacology and toxicology 48, 393-423
    61. Beinfeld, M. C., Funkelstein, L., Foulon, T., Cadel, S., Kitagawa, K., Toneff, T., Reinheckel, T., Peters, C., and Hook, V. (2009) Peptides 30, 1882-1891
    62. Biswas, N., Rodriguez-Flores, J. L., Courel, M., Gayen, J. R., Vaingankar, S. M., Mahata, M., Torpey, J. W., Taupenot, L., O'Connor, D. T., and Mahata, S. K. (2009) Endocrinology 150, 3547-3557
    63. Hook, V. Y., Toneff, T., Aaron, W., Yasothornsrikul, S., Bundey, R., and Reisine, T. (2002) Journal of neurochemistry 81, 237-256
    64. Hook, V., Toneff, T., Bogyo, M., Greenbaum, D., Medzihradszky, K. F., Neveu, J., Lane, W., Hook, G., and Reisine, T. (2005) Biological chemistry 386, 931-940
    65. Hook, G., Hook, V. Y., and Kindy, M. (2007) Biological chemistry 388, 979-983
    66. Hook, V., Kindy, M., and Hook, G. (2007) Biological chemistry 388, 247-252
    67. Hook, V. Y., Kindy, M., and Hook, G. (2008) The Journal of biological chemistry 283, 7745-7753
    68. Hook, V. Y., Kindy, M., Reinheckel, T., Peters, C., and Hook, G. (2009) Biochemical and biophysical research communications 386, 284-288
    69. Hook, V., Hook, G., and Kindy, M. (2010) Biological chemistry 391, 861-872
    70. Hook, V., Funkelstein, L., Wegrzyn, J., Bark, S., Kindy, M., and Hook, G. (2012) Biochimica et biophysica acta 1824, 89-104
    71. Wiederanders, B. (2000) Advances in experimental medicine and biology 477, 261-270
    72. Deshapriya, R. M., Yuhashi, S., Usui, M., Kageyama, T., and Yamamoto, Y. (2010) J Biochem 147, 393-404
    73. Qiao, L., Hamamichi, S., Caldwell, K. A., Caldwell, G. A., Yacoubian, T. A., Wilson, S., Xie, Z. L., Speake, L. D., Parks, R., Crabtree, D., Liang, Q., Crimmins, S., Schneider, L., Uchiyama, Y., Iwatsubo, T., Zhou, Y., Peng, L., Lu, Y., Standaert, D. G., Walls, K. C., Shacka, J. J., Roth, K. A., and Zhang, J. (2008) Mol Brain 1, 17
    74. Sevenich, L., Pennacchio, L. A., Peters, C., and Reinheckel, T. (2006) Biol Chem 387, 885-891
    75. Tseng, T. S., Cheng, C. S., Chen, D. J., Shih, M. F., Liu, Y. N., Hsu, S. T., and Lyu, P. C. (2011) The Biochemical journal
    76. Ohgushi, M., and Wada, A. (1983) FEBS letters 164, 21-24
    77. Kuroda, Y., Kidokoro, S., and Wada, A. (1992) Journal of molecular biology 223, 1139-1153
    78. Bieri O, K. T. (2000) Mechanisms in Protein Folding (2nd ed.). Oxford, UK: Oxford University Press. ISBN 0-19-963788-1.
    79. Pande, V. S., and Rokhsar, D. S. (1998) Proceedings of the National Academy of Sciences of the United States of America 95, 1490-1494
    80. Fink, A. L. (2001) ENCYCLOPEDIA OF LIFE SCIENCES © 2001, John Wiley & Sons, Ltd. www.els.net, 1-6
    81. Johnson, W. C., Jr. (1985) Methods of biochemical analysis 31, 61-163
    82. Woody, R. W. (1995) Methods in enzymology 246, 34-71
    83. Woody, R. W., Sugeta, H., and Kodama, T. S. (1996) Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme 41, 56-69
    84. Ramos, D. H. A. C. a. C. H. I. (2009) African Journal of Biochemistry Research 3, 164-173
    85. Sprecher, C. A., Baase, W. A., and Johnson, W. C., Jr. (1979) Biopolymers 18, 1009-1019
    86. Woody, R. W., and Koslowski, A. (2002) Biophysical chemistry 101-102, 535-551
    87. Weber, G. (1960) The Biochemical journal 75, 335-345
    88. Vanderkooi, J. M., Angiolillo, P. J., and Laberge, M. (1997) Methods in enzymology 278, 71-94
    89. Lacourciere, K. A., Stivers, J. T., and Marino, J. P. (2000) Biochemistry 39, 5630-5641
    90. Lakowicz, J. R. (2010) Principles of Fluorescence Spectroscopy, 529-575
    91. Engelborghs, Y. (2001) Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy 57, 2255-2270
    92. Ladokhin, A. S., Jayasinghe, S., and White, S. H. (2000) Analytical biochemistry 285, 235-245
    93. Burshtein, E. A. (1961) Biofizika 6, 753-763
    94. Vladimirov Iu, A., and Perrase, N. I. (1966) Biofizika 11, 578-583
    95. Permiakov, E. A., and Deikus, G. (1995) Molekuliarnaia biologiia 29, 339-344
    96. Kuznetsova, I. M., and Turoverov, K. K. (1983) Molekuliarnaia biologiia 17, 741-754
    97. Lakowicz, J. R., Maliwal, B. P., Cherek, H., and Balter, A. (1983) Biochemistry 22, 1741-1752
    98. Lakowicz, J. R., and Maliwal, B. P. (1983) The Journal of biological chemistry 258, 4794-4801
    99. Turoverov, K. K., and Kuznetsova, I. M. (1983) Molekuliarnaia biologiia 17, 468-474
    100. (2010) BioWave 12, 1-12
    101. Stryer, L. (1965) Journal of molecular biology 13, 482-495
    102. Srimathi, T., Kumar, T. K., Kathir, K. M., Chi, Y. H., Srisailam, S., Lin, W. Y., Chiu, I. M., and Yu, C. (2003) Biophysical journal 85, 459-472
    103. Sehorn, M. G., Slepenkov, S. V., and Witt, S. N. (2002) Biochemistry 41, 8499-8507
    104. Smoot, A. L., Panda, M., Brazil, B. T., Buckle, A. M., Fersht, A. R., and Horowitz, P. M. (2001) Biochemistry 40, 4484-4492
    105. Roque, A., Ponte, I., and Suau, P. (2007) Biophysical journal 93, 2170-2177
    106. Berg J., T. J. a. S. L. (2002) Freeman and Company, ISBN 0-7167-4955-7166
    107. Dixon, M. (1953) The Biochemical journal 55, 170-171
    108. Holdgate, G. A. (2001) BioTechniques 31, 164-166, 168, 170 passim
    109. Xiong, A. S., Yao, Q. H., Peng, R. H., Li, X., Fan, H. Q., Cheng, Z. M., and Li, Y. (2004) Nucleic Acids Res 32, e98
    110. Liu, Y. N., Lai, Y. T., Chou, W. I., Chang, M. D., and Lyu, P. C. (2007) The Biochemical journal 403, 21-30
    111. Begg, G. E., and Speicher, D. W. (1999) Journal of biomolecular techniques : JBT 10, 17-20
    112. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Analytical biochemistry 150, 76-85
    113. Kaulmann, G., Palm, G. J., Schilling, K., Hilgenfeld, R., and Wiederanders, B. (2003) Acta crystallographica. Section D, Biological crystallography 59, 1243-1245
    114. Barrett, A. J. (1980) The Biochemical journal 187, 909-912
    115. Barrett, A. J., and Kirschke, H. (1981) Methods in enzymology 80 Pt C, 535-561
    116. Barrett, A. J., Kembhavi, A. A., Brown, M. A., Kirschke, H., Knight, C. G., Tamai, M., and Hanada, K. (1982) Biochem J 201, 189-198
    117. Qian, F., Bajkowski, A. S., Steiner, D. F., Chan, S. J., and Frankfater, A. (1989) Cancer Res 49, 4870-4875
    118. Bohm, G., Muhr, R., and Jaenicke, R. (1992) Protein Eng 5, 191-195
    119. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) J Biomol NMR 6, 277-293
    120. Sattler, M., Schleucher, J., and Griesinger, C. (1999) Prog Nucl Mag Res Sp 34, 93-158
    121. Hsu, S. T., Cabrita, L. D., Christodoulou, J., and Dobson, C. M. (2009) Biomol NMR Assign 3, 29-31
    122. Davies, L. A., Keeler, J., Laue, E. D., and Moskau, D. (1992b) J Magn Reson 98, 207-216
    123. Kay, L. E., Keifer, P., and Saarinen, T. (1992b) J Am Chem Soc 114, 10663-10665
    124. Palmer, G. A., Cavanagh, J., Wright, P. E., and Rance, M. (1991b) J Magn Reson, 93
    125. Piotto, M., Saudek , V., and Sklenar, V. (1992) J Biomol NMR 2, 661-665
    126. Sattler, M., Schleucher, J., and Griesinger, C. (1999) Progress in Nuclear Magnetic Resonance Spectroscopy 34, 93–158
    127. Yamazaki T, F.-K. J., Kay LE (1993) J. Am. Chem. Soc. 115, , 11054-11055
    128. Marsh, J. A., Singh, V. K., Jia, Z., and Forman-Kay, J. D. (2006) Protein Sci 15, 2795-2804
    129. Kay, L. E., Torchia, D. A., and Bax, A. (1989) Biochemistry 28, 8972-8979
    130. Shen, Y., Delaglio, F., Cornilescu, G., and Bax, A. (2009) J Biomol NMR 44, 213-223
    131. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Acta Crystallogr D Biol Crystallogr 54, 905-921
    132. Laskowski, R. A., Macarthur, M. W., Moss, D. S., and Thornton, J. M. (1993) Journal of Applied Crystallography 26, 283-291
    133. Shah, P. P., Myers, M. C., Beavers, M. P., Purvis, J. E., Jing, H., Grieser, H. J., Sharlow, E. R., Napper, A. D., Huryn, D. M., Cooperman, B. S., Smith, A. B., 3rd, and Diamond, S. L. (2008) Mol Pharmacol 74, 34-41
    134. Myers, M. C., Shah, P. P., Diamond, S. L., Huryn, D. M., and Smith, A. B., 3rd. (2008) Bioorg Med Chem Lett 18, 210-214
    135. Cheng, C. S., Chen, M. N., Lai, Y. T., Chen, T., Lin, K. F., Liu, Y. J., and Lyu, P. C. (2008) Proteins 70, 695-706
    136. Marti-Renom, M. A., Stuart, A. C., Fiser, A., Sanchez, R., Melo, F., and Sali, A. (2000) Annual review of biophysics and biomolecular structure 29, 291-325
    137. Sali, A., and Blundell, T. L. (1993) Journal of molecular biology 234, 779-815
    138. Morris, A. L., MacArthur, M. W., Hutchinson, E. G., and Thornton, J. M. (1992) Proteins 12, 345-364
    139. Chen, R., Li, L., and Weng, Z. (2003) Proteins 52, 80-87
    140. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., and Wolfson, H. J. (2005) Nucleic acids research 33, W363-367
    141. Smith, G. R., and Sternberg, M. J. (2002) Current opinion in structural biology 12, 28-35
    142. WL, D. (2002)
    143. Ellman, G. L. (1959) Arch Biochem Biophys 82, 70-77
    144. Riddles, P. W., Blakeley, R. L., and Zerner, B. (1983) Methods Enzymol 91, 49-60
    145. Schulman, B. A., Kim, P. S., Dobson, C. M., and Redfield, C. (1997) Nat Struct Biol 4, 630-634
    146. Lyu, P. C., Gans, P. J., and Kallenbach, N. R. (1992) J Mol Biol 223, 343-350
    147. Chevigne, A., Dumez, M. E., Dumoulin, M., Matagne, A., Jacquet, A., and Galleni, M. (2010) Biochim Biophys Acta 1800, 937-945
    148. Christensen, H., and Pain, R. H. (1991) Eur Biophys J 19, 221-229
    149. Baker, D., Sohl, J. L., and Agard, D. A. (1992) Nature 356, 263-265
    150. Coulombe, R., Grochulski, P., Sivaraman, J., Menard, R., Mort, J. S., and Cygler, M. (1996) The EMBO journal 15, 5492-5503
    151. Fox, T., de Miguel, E., Mort, J. S., and Storer, A. C. (1992) Biochemistry-Us 31, 12571-12576
    152. Rzychon, M., Chmiel, D., and Stec-Niemczyk, J. (2004) Acta biochimica Polonica 51, 861-873
    153. Podobnik, M., Kuhelj, R., Turk, V., and Turk, D. (1997) Journal of molecular biology 271, 774-788
    154. Kaulmann, G., Palm, G. J., Schilling, K., Hilgenfeld, R., and Wiederanders, B. (2006) Protein Sci 15, 2619-2629
    155. Felbor, U., Kessler, B., Mothes, W., Goebel, H. H., Ploegh, H. L., Bronson, R. T., and Olsen, B. R. (2002) Proc Natl Acad Sci U S A 99, 7883-7888
    156. Mason, R. W., Gal, S., and Gottesman, M. M. (1987) Biochem J 248, 449-454
    157. Gutierrez-Gonzalez, L. H., Rojo-Dominguez, A., Cabrera-Gonzalez, N. E., Perez-Montfort, R., and Padilla-Zuniga, A. J. (2006) Archives of biochemistry and biophysics 446, 151-160
    158. Roche, L., Tort, J., and Dalton, J. P. (1999) Mol Biochem Parasitol 98, 271-277
    159. Bullough, P. A., Hughson, F. M., Skehel, J. J., and Wiley, D. C. (1994) Nature 371, 37-43
    160. Tseng, T. S., Cheng, C. S., Chen, D. J., Shih, M. F., Liu, Y. N., Hsu, S. T., and Lyu, P. C. (2012) The Biochemical journal 442, 563-572
    161. Tina, K. G., Bhadra, R., and Srinivasan, N. (2007) Nucleic Acids Res 35, W473-476
    162. LaLonde, J. M., Zhao, B., Janson, C. A., D'Alessio, K. J., McQueney, M. S., Orsini, M. J., Debouck, C. M., and Smith, W. W. (1999) Biochemistry 38, 862-869
    163. Chen, Y., Plouffe, C., Menard, R., and Storer, A. C. (1996) FEBS Lett 393, 24-26
    164. Sivaraman, J., Lalumiere, M., Menard, R., and Cygler, M. (1999) Protein Sci 8, 283-290
    165. Notredame, C., Higgins, D. G., and Heringa, J. (2000) Journal of molecular biology 302, 205-217
    166. Teles, R. C., Calderon Lde, A., Medrano, F. J., Barbosa, J. A., Guimaraes, B. G., Santoro, M. M., and de Freitas, S. M. (2005) Biophysical journal 88, 3509-3517
    167. Bosshard, H. R., Marti, D. N., and Jelesarov, I. (2004) Journal of molecular recognition : JMR 17, 1-16
    168. Chan, C. H., Yu, T. H., and Wong, K. B. (2011) PloS one 6, e21624
    169. Horovitz, A. (1996) Folding & design 1, R121-126
    170. Eswar, N., Webb, B., Marti-Renom, M. A., Madhusudhan, M. S., Eramian, D., Shen, M. Y., Pieper, U., and Sali, A. (2007) Current protocols in protein science / editorial board, John E. Coligan ... [et al.] Chapter 2, Unit 2 9
    171. Fiser, A., Do, R. K., and Sali, A. (2000) Protein science : a publication of the Protein Society 9, 1753-1773
    172. Laskowski, R. A., Moss, D. S., and Thornton, J. M. (1993) Journal of molecular biology 231, 1049-1067
    173. Wallace, A. C., Laskowski, R. A., and Thornton, J. M. (1995) Protein Eng 8, 127-134

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE