簡易檢索 / 詳目顯示

研究生: 李崧助
論文名稱: 三氧化二鐵奈米微粒合成與應用
Synthesis and Application of Iron(III) Oxide Nanoparticles
指導教授: 周更生
Kan-Sen Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 88
中文關鍵詞: 三氧化二鐵
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以化學沉澱法製備α相的三氧化二鐵(α-Fe2O3)。根據一些製備α-Fe2O3的文獻,可以發現到它們都有幾個共同的缺點:(1)反應時間長;或(2)前趨鹽的濃度普遍偏低,產物的量少。因此本研究之重點即在於開發新的製程改善前述缺點,希望能夠找到一種高的前趨鹽濃度、反應時間短、且仍有小粒徑而懸浮的α相三氧化二鐵的製程,以便未來之應用研究。
    研究主要有兩種製程:(1)第一種是以氯化鐵為前趨鹽,氫氧化鈉和尿素作為沉澱劑,二氯化鐵為反應加速劑,PVP (Polyvinyl pyrrolidone)為保護劑,利用價格低廉的化學沉澱法完成製備奈米級α相的三氧化二鐵。添加高量的氫氧化鈉可以快速地提升轉化率,但是容易因為沉澱反應太快,而造成不均勻性的現象,故改以少量NaOH並搭配尿素作為沉澱劑,儘可能降低此不均勻的問題。二氯化鐵的添加能夠加速氫氧化鐵的脫水與溶解,在短時間內得到α-Fe2O3。(2)第二種方法和第一種方法類似,但沒加入二氯化鐵,只有利用尿素就可以快速的反應生成奈米級α相的三氧化二鐵。保護劑PVP則可以有效地吸附在生成粒子的表面並提供立體結構障礙,以抑制奈米粒子的聚集,達到所要求的奈米級懸浮微粒之目標。
    除程序探討外,對於成品的諸多特性,例如晶相(XRD)、粒徑分佈、形態(SEM、TEM)、光譜(UV-Vis)及熱重行為(TGA),亦加以分析以增進對反應過程機制之瞭解。


    一、 前言------------------------------------------------------------------------------------1 二、 文獻回顧----------------------------------------------------------------------------4 2-1 沉澱法--------------------------------------------------------------------------------- 4 2-1.1 非勻相沉澱法----------------------------------------------------------------4 2-1.2 勻相沉澱法-------------------------------------------------------------------8 2-2 溶膠-凝膠法-------------------------------------------------------------------------- 9 2-3 水熱法--------------------------------------------------------------------------------10 2-4 水解法--------------------------------------------------------------------------------16 2-4.1 強迫水解法------------------------------------------------------------------16 2-4.2 沸騰回流法------------------------------------------------------------------20 三、 實驗方法---------------------------------------------------------------------------24 3-1 實驗藥品-----------------------------------------------------------------------------24 3-2 實驗儀器-----------------------------------------------------------------------------24 3-3 實驗方法與流程--------------------------------------------------------------------25 3-3.1 放入烘箱中脫水的沉澱法------------------------------------------------25 3-3.1.1不同濃度的NaOH對反應生成物的影響(未加入保護劑PVP)25 3-3.1.2不同濃度的NaOH對反應生成物的影響(加入保護劑PVP)--26 3-3.2 加入 FeCl2的沉澱法------------------------------------------------------27 3-3.2.1不同濃度的NaOH對反應生成物的影響(未加入保護劑PVP)28 3-3.2.2不同濃度的NaOH對反應生成物的影響(加入保護劑PVP)---28 3-3.2.3不同濃度的FeCl2對反應生成物的影響(未加入保護劑PVP)-29 3-3.2.4不同pH值對反應時間的影響(未加入保護劑PVP)------------ 3 0 3-3.2.5兩步驟加入保護劑對反應生成物的影響------------------------- 32 3-3.2.6混合型沉澱劑對反應生成物的影響------------------------------- 33 3-3.2.6.1先NaOH,再尿素為混合型沉澱劑--------------------------33 3-3.2.6.2先尿素,再NaOH為混合型沉澱劑-------------------------35 3-3.3 加入FeCl2加快反應速度的機制探討----------------------------------35 3-3.4 加入尿素的沉澱法---------------------------------------------------------36 3-3.4.1反應時間對反應生成物的影響-------------------------------------37 四、 結果與討論-----------------------------------------------------------------------38 4-1 放入烘箱中脫水的沉澱法--------------------------------------------------------38 4-1.1 不同濃度的NaOH對反應生成物的影響(未加入保護劑PVP)----38 4-1.2 不同濃度的NaOH對反應生成物的影響(加入保護劑PVP)-------40 4-2 加入FeCl2的沉澱法---------------------------------------------------------------43 4-2.1 不同濃度的NaOH對反應生成物的影響(未加入保護劑PVP)----43 4-2.2 不同濃度的NaOH對反應生成物的影響(加入保護劑PVP)-------46 4-2.3 不同濃度的FeCl2對反應生成物的影響(未加入保護劑PVP)-----47 4-2.4 不同pH值對反應時間的影響(未加入保護劑PVP)-----------------53 4-2.5 兩步驟加入保護劑對反應生成物的影響------------------------------58 4-2.6 混合型沉澱劑對反應生成物的影響------------------------------------60 4-2.6.1先NaOH,再尿素為混合型沉澱劑--------------------------------61 4-2.6.2 先尿素,再NaOH為混合型沉澱劑------------------------------ 64 4-3 加入FeCl2加快反應速度的機制探討------------------------------------------66 4-4 加入尿素的沉澱法-----------------------------------------------------------------75 4-4.1 反應時間對反應生成物的影響---- -------------------------------------75 五、 結論-----------------------------------------------------------------------------------83 六、 參考文獻---------------------------------------------------------------------------85

    Bratsch, S. G.,” Standard electrode potentials and temperature coefficients in water at 298.15K”, J. Phys. Chem. Ref. Data, 18 (1989) 1-21.
    Brown, D. A., B. L. Sherriff, J. A. Sawick,” Microbial transformation of magnetite(Fe3O4) to hematite(α-Fe2O3)”, Geochimica et Cosmochimica Acta, 61 (1997) 3341-3348.
    Cornell, R. M., W. Schenelder, R. Giovanoli,” Preparation and characterization of colloidal α-FeOOH with a narrow size distribution”, J. Chem. SOC. Faraday Trans, 87 (1991) 869-873.
    Diamandescu, L., D. Mihaila-Tarabasanu, N. Popescu-Pogrion, A. Totovian, I. Bibicu,” Hydrothermal synthesis and characterization of some polycrystallineα-iron oxides,” Ceramics International, 25 (1999) 689-692.
    Fulei, V.P.D., D. Lynn Johnson, “Self-assembled(SA) bilayer molecular coating on
    magnetic nanoparticles,” Applied Surface Science, 181 (2001) 173-178.
    Hlavay, J., K. Polyak,” Determination of surface preperties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water”, Journal of Colloid and Interface Science, 284 (2005) 71-77.
    Iijima, M., Y. Yonemochi, M. Tsukada, H. Kamiya,” Microstructure control of iron hydroxide nanoparticles using surfactants with different molecular structures”, Journal of Colloid and Interface Science, 298 (2006) 202-208.
    Liao, X., J. Zhu, W. Zhong, H. Y. Chen,”Synthesis of amorphous Fe2O3 nanoparticles by microwave irradiation”, Materials Letters, 50 (2001) 341-346.
    Liu, H., Y. Wei, Y. Sun, W. Wei,” Dependence of the mechanism of phase transformation of Fe(III) hydroxide on pH”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 252 (2005) 201-205.
    Liu, X., G. Qiu, A. Yan, Z. Wang, X. Li,” Hydrothermal synthesis and characterization of α-FeOOH and α-Fe2O3 uniform nanocrystallines”, Journal of Alloys and Compounds, xxx (2006) xxx-xxx.
    Meng, J., G. Yang, L. Yan, X. Wang,” Synthesis and characterization of magnetic nanometer pigment Fe3O4”, Dyes and Pigments, 66 (2005) 109-113.
    Music, S., S. Krehula, S. Popovic, “Effect of additions on forced hydrolysis of FeCl3 solutions”, Materials Letters, 58 (2004) 2640-2645.
    Music, S., S. Krehula, S. Popovic, Z. Skoko,” Some factors influencing forced hydrolysis of FeCl3 solutions”, Materials Letters, 57 (2003) 1096-1102.
    Oldfield, J. W., W. H. Sutton,” Crevice corrosion of stainless steels: A mathematical model”, British Corrosion Journal, 13 (1978) 13-22.
    Pu, Z., M. Cao, J. Yang, K. Huang, C. Hu,”Controlled synthesis and growth mechanism of hematite nanorhombohedra, nanorods and nanocubes”, Nanotechnology, 17 (2006) 799-804.
    Raming, T. P., A. J. A. Winnubst, C. M. van Kats, A. P. Philipse,” The synthesis and magnetic properties of nanosized hematite(α-Fe2O3) particles”, Journal of Colloid and Interface Science, 249 (2002) 346-350.
    Ristic, M., S. Music, M. Godec,” Properties of γ-FeOOH, α-FeOOH and α-Fe2O3 particles precipitated by hydrolysis of Fe3+ ions in percholrate containing aqueous solutions”, Journal of Alloys and Compounds, 417 (2006) 292-299.
    Segal, M. G. and R. M. Sellers,” Reactions of solid Iron(III) Oxides with Aqueous Reducing Agents”, Chemical Communications, (1980) 991-993.
    Shin, H. S., H. J. Yang, S. B. Kim, M. S. Lee,” Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution”, J. Colloid Interface Sci., 89 (2004) 274-280.
    Subrt, J., J. Bohacek, V. Stengl, T. Grygar, P. Bezdicka,” Uniform particles with a large surface area formed by hydrolysis of Fe2(SO4)3 with urea”, Materials Research Bulletin, 34 (1999) 905-914.
    Sun, Z., H. Yuan, Z. Liu, B. Han, X. Zhang,“ A highly efficient chemical sensor material for H2S:α-Fe2O3 nanotubes fabricated using carbon nanotube templates”, adv. Mater., 17 (2005) 2993-2997.
    Tan, O. K., W. Zhu, Q. Yan, L. B. Kong,” Size effect and gas sensing characteristics of nanocrystalline xSnO2-(1-x) –Fe2O3 ethanol sensors”, Sensors and Actuators B, 65 (2000) 361-365.
    Walter, D.,“ Characterization of synthetic hydrous hematite pigments” , Thermochimica Acta, 445 (2006) 195-199.
    Walter, D., G. Buxbaum, W. Laqua,” The mechanism of the thermal transformation from goethite to hematite”, Journal of Thermal Analysis and Calorimetry, 63 (2001) 733-748.
    Wang, H., X. Zhang, B. Liu, H. Zhao, Y. Li, Y. Huang, Z. Du,” Synthesis and characterization of single crystal α-Fe2O3 nanobelts”, Chemistry Letters, (2005) 134-137.
    Wang, X., X. Chen, X. Ma, H. Zheng,”Low-twmperature synthesis of α-Fe2O3 nanoparticles with a closed cage structure”, Chemical Physics Letters, 384 (2004) 391-393.
    Woo, K., H. J. Lee,” Synthesis and magnetism of hematite and maghemite
    nanoparticles”, Journal of Magnetism and Magnetic Materials 272-276 (2004)
    e1155-e1156.
    Wu, C., P. Yin, X. Zhu, C. O. Yang, Y. Xie,” Synthesis of hematite(α-Fe2O3) nanorods: Diameter-size and shape effects on their applocations in magnetism, lithium ion battery, and gas sensors”, J. Phys. Chem. B, 110 (2006) 17806-17812.
    Xu, X. L., J. D. Guo, Y. Z. Wang,” A novel technique by the citrate pyrolysis for preparation of iron oxide nanoparticles”, Materials Science and Engineering B, 77 (2000) 207-209.
    Yang, W. H., C. F. Lee, H. Y. Tang, D. B. Shieh, C. S. Yeh,“ Iron oxide nanopropellers prepared by low-temperature solution approach”, J. Phys. Chem. B, 110 (2006) 14087-14091.
    Yariv, S. and E. Mendelovici,” The effect of degree of crystallinity on the infrared spectrum of hematite”, Applied Spectroscopy, 33 (1979) 410-411.
    Yu, W. and L. Hui,” Preparation of nano-needle hematite particles in solution”, Materials Research Bulletin, 34 (1999) 1227-1231.
    Zhang, Z. J., Z. L. Wang, B. C. Chakoumakos and J. S. Yin, J. Am. Chem. Soc., 120 (1998) 1800-1806.
    賴岳生,”奈米銀/鈀微粒之化學合成與其特性分析之研究”,國立清華大學碩士論文 (2003).
    盧育杰,”葡萄糖還原系統下製備奈米銀及其反應動力學之研究”,國立清華大學碩士論文 (2005).
    溫明鏡,”氧化鐵磁性奈米粒子之合成與特性研究”,國立中正大學物理研究所碩士論文 (2003).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE