研究生: |
陳彥辰 Chen, Yen-Chen |
---|---|
論文名稱: |
正交分頻多工系統下多解析度多媒體廣播/群播服務之調變與資源分配 Modulation and Resource Allocation for Multi-resolution Multimedia Broadcast/Multicast Services in OFDM Systems |
指導教授: |
蔡育仁
Tsai, Yuh-Ren |
口試委員: |
王晉良
李志鵬 張仲儒 溫志宏 蔡育仁 |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 正交分頻多工 、多解析度多媒體服務 、多媒體廣播/群播服務 、多階層結合調變 、資源分配 |
外文關鍵詞: | Orthogonal frequency division multiplexing, Multi-resolution multimedia services, Multimedia broadcast/multicast services, Multilevel coupling modulation, Resource allocation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為因應多媒體服務需求的日益增長,多媒體廣播╱群播服務和正交分頻多工技術已被利用在許多無線通訊系統中,以增進頻寬使用效率。此外,為求增加系統吞吐量,多媒體廣播╱群播服務同時支援多重解析度服務的資料串流。不過,儘管多媒體廣播╱群播服務支援多重解析度服務,但對應於不同解析度服務的資料串流則是被視為不同的服務而獨立地處理,並且在不同的無線電資源上進行傳送,因此,降低了資源使用效率。在接收端的角度,傳送在高解析度服務通道上的資料中,有部份寶貴的資料是可以用來提昇低解析度服務的接收訊號品質。
在這篇博士論文的第一個部份,我們提出了一套新的調變技術,名為多階層結合調變法,主要目的在增進多解析度多媒體廣播╱群播服務系統的總吞吐量及擴展服務範圍。我們所提出的多階層結合調變法可以完整地應用所有在不同解析度通道中所傳送的資料,來增進各解析度的接收服務品質。此外,在白高斯通道和多路徑衰褪通道下,我們推導出多階層結合調變技術的訊號錯誤率的理論值。再者,不同解析度服務之間的最佳功率分配也在這篇博士論文中探討,基於我們所提出的位元錯誤率近似函數,我們找到了最佳功率分配的解。在觀察分析和模擬的結果,多階層結合調變技術可以很有效地增進系統吐吞量和增進服務範圍,而吐吞量的增加量可超過傳統方法的118%。
在近幾年中,許多的適應資源分配法已被提出來最佳化群播正交分頻多工系統的吞吐量,但是,這些方法皆忽略了多解析度服務的概念,在此篇博士論文中,我們公式化了多解析度群播正交分頻多工系統的資源分配問題。此外,利用高解析度通道傳送低解析度資料的方式,及透過頻率分集結合,必須合併於多解析度群播正交分頻多工系統的資源分配問題中。在此篇博士論文中,我們提出了三階段演算法來解決此一資源分配的問題。由模擬的結果可知,我們所提出的資源分配法可以有效地增進系統吞吐量,而其中頻率分集結合的技術,是有效增進多解析度群播正交分頻多工系統效能的因素之一。
[1] “Technical Specification 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Multimedia Broadcast/Multicast Service; Stage 1—Release 6,” 3GPP TS 22.146, V6.0.0, June 2002.
[2] “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2—Release 8,” 3GPP TS 36.300, V8.2.0, Sep. 2007.
[3] IEEE 802.16TMe-2005, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, IEEE, Feb. 2006.
[4] “Radio broadcasting systems: Digital audio broadcasting (DAB) to mobile, portable and fixed receivers,” ETSI, ETS 300 401, 1.3.2 ed., 2000.
[5] “Digital video broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television,” ETSI, EN 300 744, 1.3.1 ed., 2000.
[6] A. M. C. Correia, J. C. M. Silva, N. M. B. Souto, L. A. C. Silva, A. B. Boal and A. B. Soares, “Multi-Resolution Broadcast/Multicast Systems for MBMS,” IEEE Trans. Broadcasting, vol. 53, no. 1, part 2, pp. 224-234, Mar. 2007.
[7] “Multimedia Broadcast/Multicast Service (MBMS); Architecture and functional description—Release 6,” 3GPP TR 23.846, V6.1.0, Dec. 2002.
[8] L.-F. Wei, “Coded modulation with unequal error protection,” IEEE Trans. Commun., vol. 41, no. 10, pp. 1439-1449, Oct. 1993.
[9] M. C. Chiu and C. C. Chao, “Low-decoding-complexity TDM coded modulation with unequal error protection,” IEE Proc. Commun., vol. 144, no. 6, pp. 372-380, Dec. 1997.
[10] S. Gadkari and K. Rose, “Time-division versus superposition coded modulation schemes for unequal error protection,” IEEE Trans. Commun., vol. 47, no. 3, pp. 370-379, Mar. 1999.
[11] W. Tan and A. Zakhor, “Video multicast using layered FEC and scalable compression,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, pp. 373-386, Mar. 2001.
[12] T. Bruggen and P. Vary, “Unequal error protection by modulation with unequal power allocation,” IEEE Commun. Letters, vol. 9, no. 6, pp. 484-486, Jun. 2005.
[13] S. McCanne, M. Vetterli and V. Jacobson, “Low-complexity video coding for receiver-driven layered multicast,” IEEE J. Select Areas in Commun., vol. 15, pp. 983-1001, Aug. 1997.
[14] A. Majumdar and K. Ramchandran, “Video multicast over lossy channels based on distributed source coding,” in Proc. IEEE ICIP on Image Processing, Oct. 2004, vol. 5, pp. 3093-3096.
[15] M. B. Pursley and J. M. Shea, “Nonuniform phase-shift-key modulation for multimedia multicast transmission in mobile wireless networks,” IEEE J. Select. Areas in Commun., vol. 17, no. 5, pp. 774-783, May 1999.
[16] M.-S. Alouini, X. Tang and A. J. Goldsmith, “An adaptive modulation scheme for simultaneous voice and data transmission over fading channels,” IEEE J. Select. Areas in Commun., vol. 17, no. 5, pp. 837-850, May 1999.
[17] M. B. Pursley and J. M. Shea, “Multimedia multicast wireless communications with phase-shift-key modulation and convolutional coding,” IEEE J. Select Areas in Commun., vol. 17, no. 11, pp. 1999-2010, Nov. 1999.
[18] M. B. Pursley and J. M. Shea, “Adaptive nonuniform phase-shift-key modulation for multimedia traffic in wireless networks,” IEEE J. Select Areas in Commun., vol. 18, no. 8, pp. 1394-1407, Aug. 2000.
[19] C.-S. Hwang and Y. Kim, “An adaptive modulation for integrated voice/data traffic over Nakagami fading channels,” in Proc. IEEE VTC-Fall, Sep. 2001, pp. 1649-1652.
[20] C.-S. Hwang and Y. Kim, “An adaptive modulation method for multicast communications of hierarchical data in wireless networks,” in Proc. IEEE ICC on Commun., Apr. 2002, vol. 2, pp. 896-900.
[21] M. J. Hossain, P. K. Vitthaladevuni, M.-S. Alouini and V. K. Bhargava, “Hierarchical modulations for multimedia and multicast transmission over fading channels,” in Proc. IEEE VTC-Spring, Apr. 2003, vol. 4, pp. 2633-2637.
[22] M. J. Hossain, P. K. Vitthaladevuni, M.-S. Alouini, V. K. Bhargava and A. J. Goldsmith, “Adaptive hierarchical modulation for simultaneous voice and multiclass data transmission over fading channels,” IEEE Trans. Veh. Technol., vol. 55, no. 4, pp. 1181-1194, July 2006.
[23] C. Hellge, S. Mirta, T. Schierl and T. Wiegand, “Mobile TV with SVC and hierarchical modulation for DVB-H broadcast services,” in Proc. IEEE BMSB, May 2009, pp. 1-5.
[24] “Technical Specification Group Radio Access Network; Physical layer aspects for evolved Universal Terrestrial Radio Access (UTRA) (Release 7),” 3GPP TR 25.814 V7.1.0, Sep. 2006.
[25] F. Hartung, U. Horn, J. Huschke, M. Kampmann and T. Lohmar, “Delivery of broadcast services in 3G networks,” IEEE Trans. Broadcasting, vol. 53, no. 1, pp. 188-199, Mar. 2007.
[26] C. Suh and J. Mo, “Resource allocation for multicast services in multicarrier wireless communications,” IEEE Trans. Wireless Commun., vol. 7, pp. 27-31, Jan. 2008.
[27] C. Suh, S. Park and Y. Cho, “Efficient algorithm for proportional fairness scheduling in multicast OFDM systems,” in Proc. IEEE VTC, May 2005, vol. 3, pp. 1880-1884.
[28] D. T. Ngo, C. Tellambura and H. H. Nguyen, “Efficient resource allocation for OFDMA multicast systems with spectrum-sharing control,” IEEE Trans. Veh. Technol., vol. 58, pp. 4878-4889, Nov. 2009.
[29] B. Ozbek, D. L. Ruyet and H. Khiari, “Adaptive resource allocation for multicast OFDM systems with multiple transmit antennas,” in Proc. IEEE ICC, June 2006, vol. 10, pp. 4409-4414.
[30] J. Xu, S.-J. Lee, W.-S. Kang and J.-S. Seo, “Adaptive resource allocation for MIMO-OFDM based wireless multicast systems,” IEEE Trans. Broadcasting, vol. 56, no. 1, pp. 98-102, Mar. 2010.
[31] A. Demarez, D. Boulinguez and Y. Delignon, “Adaptive bit and power-loading for multicast OFDM transmissions in Rayleigh fading channels,” in Proc. IEEE ISWCS, Sep. 2006, pp. 378-382.
[32] Advanced Video Coding for Generic Audiovisual Services, ITU-T Rec. H.264 & ISO/IEC 14496-10 AVC, v3:2005, Amendment 3: Scalable Video Coding.
[33] H. Schwarz, D. Marpe and T. Wiegand, “Overview of scalable video coding extension of the H.264/AVC standard,” IEEE. Trans. Circuits Syst. Video Technol., vol. 17, pp. 1103-1120, Sep. 2007.
[34] T. Schierl, T. Stockhammer and T. Wiegand, “Mobile video transmission using scalable video coding,” IEEE. Trans. Circuits Syst. Video Technol., vol. 17, pp. 1204-1217, Sep. 2007.
[35] J. G. Proakis, Digital Communications, 4/e. McGraw-Hill, 2001.
[36] T. B. Soresen, P. E. Mogensen and F. Fredriksen, “Extension of the ITU channel models for wideband (OFDM) systems,” in Proc. IEEE VTC-Fall, Sep. 2005, vol. 1, pp. 392-396.
[37] S. T. Chung and A. J. Goldsmith, “Degrees of freedom in adaptive modulation: a unified view,” IEEE Trans. Commun., vol. 49, no. 9, pp. 1561-1571, Sep. 2001.
[38] P. K. Vitthaladevuni and M.-S. Alouini, “BER computation of 4/M-QAM hierarchical constellations,” IEEE Trans. Broadcasting, vol. 47, no. 3, pp. 228-239, Sep. 2001.
[39] “Spatial Channel Model for Multiple Input and Multiple Output (MIMO) Simulations (Release 8),” 3GPP TR 25.996 V8.0.0, Dec. 2008.
[40] C. Y. Wong, R. S. Cheng, K. Ben Letaief and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit and power allocation,” IEEE J. Selec. Areas Commun., vol. 17, pp. 1747-1758, Oct. 1999.
[41] T. C. H. Alen, A. S. Madhukumar and F. Chin, “Capacity enhancement of a multi-user OFDM system using dynamic frequency allocation,” IEEE Trans. Broadcasting, vol. 49, no. 4, pp. 344-353, Dec. 2003.
[42] H. Won, H. Cai, D. Y. Eun, K. Guo, A. Netravali, I. Rhee and K. Sabnani, “Multicast scheduling in cellular data networks,” IEEE Trans. Wireless Commun., vol. 8, no. 9, pp. 4540-4549, Sep. 2009.
[43] G. L. Stuber, Principles of Mobile Communication, 2nd ed. Kluwer Academic Publishers, 2001.
[44] J. Liu, W. Chen, Z. Cao, Y. J. Zhang and S. C. Liew, “Asymptotic throughput in wireless multicast OFDM systems,” in Proc. IEEE Globecom, Nov. 2008, pp. 1-5.
[45] J. Campello, Discrete Bit Loading for Multicarrier Modulation Systems. Ph. D dissertations, Stanford, 1997.