研究生: |
廖建閎 Chien-Hung Liao |
---|---|
論文名稱: |
可低溫共燒之玻璃-陶瓷/氧化鋁積層結構的自我束縛燒結行為 Self-constrained sintering of a multilayer low-temperature-cofired glass-ceramics/alumina laminate |
指導教授: |
簡朝和
Jau-Ho Jean |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 16 |
中文關鍵詞: | 低溫共燒陶瓷 、翹曲 、應力 、束縛燒結 |
外文關鍵詞: | low-temperature-cofired ceramics(LTCC), camber, stress, constrained sintering |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中已經成功研發出由CaO-B2O3-SiO2玻璃(CBSG)和Al2O3組成的自我束縛低溫共燒陶瓷系統。實驗方法是製作由CBSG和Al2O3組成的CBSG/Al2O3積層結構,改變的參數分別為束縛層Al2O3層的厚度和Al2O3粒徑。因為CBSG的燒結緻密溫度遠低於Al2O3,所以束縛在CBSG表面不緻密的Al2O3在共燒時可以有效阻止CBSG在X-Y方向的收縮,待CBSG燒結緻密後,CBSG會藉由毛細作用從Al2O3孔隙滲透進入Al2O3層,並與Al2O3反應促使Al2O3層變緻密。此種交互束縛的行為可使CBSG/Al2O3系統在共燒的過程中,只有Z方向產生收縮,X-Y方向幾乎沒有收縮,表現出此自我束縛低溫共燒陶瓷系統緻密的獨特性。
[1] W. A. Vitrio and R. L. Brown, “Process for Fabricating Dimensionally Stable Interconnect Boards,” U.S. Pat. No. 4,645,552, 1987.
[2] K. R. Mikeska and D. T. Schaefer, “Method for Reducing Shrinkage during Firing of Ceramic Bodies,” U.S. Pat. No. 5,254,191, 1993.
[3] B. Geller, B. Thaler, A. Fathy, M. J. Liberatore, H. D. Chen, G. Ayers, V. Pendrick, and Y. Narayan, “LTCC-M: An Enabling Technology for High Performance Multilayer RF Systems,” J. Microwave, 7, 64-72 (1999).
[4] J. Bang and G. Q. Lu, “Constrained-Film Sintering of a Borosilicate Glass: In Situ Measurement of Film Stresses,” J. Am. Ceram. Soc., 78 [3] 813-15 (1995).
[5] T. J. Garino and H. K. Bowen, “Deposition and Sintering of Particle Films on a Rigid Substrate,” J. Am. Ceram. Soc., 70 [11] C315-17 (1987).
[6] T. J. Garino and H. K. Bowen, “Kinetics of Constrained-Film Sintering,” J. Am. Ceram. Soc., 73 [2] 251-57 (1990).
[7] G. W. Scherer and T. Garino, “Viscous Sintering on a Rigid Substrate,” J. Am. Ceram. Soc., 68 [4] 216-20 (1985).
[8] Y. C. Lin and J. H. Jean, “Constrained Sintering of Silver Circuit Paste,” J. Am. Ceram. Soc., 87 [2] 187-91 (2004).
[9] R. K. Bordia and R. Raj, “Sintering Behavior of Ceramic Films Constrained by a Rigid Substrate,” J. Am. Ceram. Soc., 68 [6] 287-92 (1985).
[10] S.Y. Tzeng and J. H. Jean, “Stress Development during Constrained Sinetring of Alumina/Glass/Alumina Sandwich Structure,” J. Am. Ceram. Soc., 85 [2] 335-40 (2002).
[11] Y. C. Lin and J. H. Jean, “Constrained Densification Kinetics of Alumina/Borosilicate Glass + Alumina/Alumina Sandwich Structure,” J. Am. Ceram. Soc., 85 [1] 150-54 (2002).
[12] J. C. Chang and J. H. Jean, “Self-Constrained Sintering of Mixed Low-Temperature-Cofired Ceramic Laminates,” J. Am. Ceram. Soc., 89 [3] 829-35 (2006).
[13] C. D. Lei and J. H. Jean, “Effect of Crystallization on the Stress Required for Constrained Sintering of CaO-B2O3-SiO2 Glass-Ceramics,” J. Am. Ceram. Soc., 88 [3] 599-603 (2005).
[14] C. R. Chang and J. H. Jean, “Crystallizatin Kinetics and Mechanism of Low-Dielectric, Low-Temperature, Cofirable Cao-B2O3-SiO2 Glass-Ceramics,” J. Am. Ceram. Soc., 82 [7] 1725-32 (1999).
[15] S. Pejovnik, D. Kolar, W. J. Huppmann, and G. Petzow, “Sintering of Alumina in Presence of Liquid Phase”; pp. 285-92 in Sintering-New Developments. Edited by M. M. Ristic. Elsevier, Amsterdam, The Netherlands, 1978.
[16] J. H. Jean and T. K. Gupta, “Liquid-Phase Sintering in the Glass-Cordierite System,” J. Mater. Sci., 27 [6] 1575-84 (1992).
[17] R. R. Tummala and B. J. Foster, “Wetting of Glass-to-Metal and Glass-to-Ceramic in Water-Vapour Atmospheres,” J. Mater. Sci. Lett., 10 [5] 905-06 (1975).