研究生: |
江和興 Ho-Hsing Jiang |
---|---|
論文名稱: |
直接甲醇燃料電池陰極微孔層對性能的影響 Effect of Cathode Microporous Layer on the Cell Performance of DMFC |
指導教授: |
王訓忠
Shung-Chung Wong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 48 |
中文關鍵詞: | 陰極水滿溢 、微孔層 |
外文關鍵詞: | cathode flooding, micro porous layer (MPL) |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,為了提升電池性能已有不少方法是針對於改善陰極水滿溢的問題。這些方法主要可區分為二: (1) 改善流道設計以及 (2) 在觸媒層與氣體擴散層之間增加一層具斥水性的微孔層結構。微孔層主要功能在於能夠讓液態水經由質子交換膜回流到陽極,進而達到減輕陰極水滿溢的現象。
本研究主要目的在於觀察不同孔隙結構的微孔層對直接甲醇燃料電池性能的影響。文章中,我們利用不同粒徑的碳粉以建構出不同孔隙結構的微孔層並觀察到由較細微粒徑的碳顆粒所組成的微孔層能有效降低接觸阻抗。然而,由較大粒徑的碳顆粒所組成的微孔層僅只是在碳布上構成另一層會增加接觸阻抗的結構。性能比較方面,具微孔層的膜電極組其優勢隨著操作溫度的提昇變得更明顯。在低溫操作條件下,具微孔層的膜電極組與未作處理的膜電極組無明顯差異;而在高溫操作條件下,具有微孔層的膜電極組性能明顯優於未經處理的膜電極組。
In recent years, many approaches have been presented to improve the cathode flooding in order to obtain better cell performance. These approaches can be categorized as (1) by improving the flow field plate design and (2) by incorporating a hydrophobic micro porous layer (MPL) between the GDL and catalyst layer. The main function of MPL is to promote back-flow of liquid water towards the anode across the proton exchange membrane and alleviates cathode flooding.
The objective of this study is to investigate the effects of different porous structures in MPL on the performance of a DMFC. In this paper, we employ different size of carbon particles to build the MPL with different porous structures and observe that the contact resistance is reduced efficiently by the MPL comprised of finer carbon particles. However, the larger carbon particles just form another layer upon the carbon cloth, which increase the contact resistances. At performance comparison, the advantages of MEA with MPL are more evident as temperature is increased. At low operation temperature, the difference between MEA with MPL and without MPL is not very evident. But the MEA with MPL becomes better than untreated MEA at high operation temperature.
1.Web Site of “Fuel Cell Today”: http://www.fuelcelltoday.com/index/
2.Heinzel, A., Barragan V. M., “A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells”, J. Power Sources, 1999, 84, pp 70-74.
3.Lu, G. Q., Wang, C. Y., “Electrochemical and flow characterization of a direct methanol fuel cell”, J. Power Sources, 2004, 134, pp 33-40.
4.Dohle, H., Jung, R., Kimiaie, N., Mergel, J., and Müller, M., “Interaction Between the Diffusion Layer and the Flow Field of Polymer Electrolyte Fuel Cells---Experiments and Simulation Studies”, J. Power Sources, 2003, 124, pp 371-384.
5.Zhukovsky, K., and Pozio, A., “Maximum Current Limitations of the PEM Fuel Cell with Serpentine Gas Supply Channels”, J. Power Sources, 2004, 130, pp95-105.
6.賴威任, “直接甲醇燃料電池陰極凝結水排除過程之觀察”, 國立清華大學動力機械工程學系碩士論文, 2006.
7.蔡政賢, “具毛細作用之平行流道對直接甲醇燃料電池之陰極排水效能測試”, 國立清華大學動力機械工程學系碩士論文, 2007.
8.Pasaogullari, U., and Wang, C. Y., “Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells”, Electrochimica Acta, 2004, 49, pp 4359-4369.
9.Weber, A. Z., and Newman, J., “Effects of Microporous Layers in Polymer Electrolyte Fuel Cells”, J. Electrochem. Soc., 2005, 152, pp A677-A688.
10.Blum, A., Duvdevani, T., Philosoph, M., Rudoy, N., Peled, E., “Water-neutral micro direct-methanol fuel cell (DMFC) for portable applications”, J. Power Sources, 2003, 117, pp 22-25.
11.Ren, X., Kovacs, F. W., Shufon, K. J., Gottesfeld, S., “Passive water management techniques in direct methanol fuel cells,” US Patent, Patent NO. 20040209154A1.
12.Liu, F. Q., Lu, G. Q., Wang, C. Y., “Low Crossover of Methanol and Water through Thin Membranes in Direct Methanol Fuel Cells”, J. Electrochem. Soc., 2006, 153, pp A543-A553.
13.Guo, Z., Faghri, A., “Miniature DMFCs with passive thermal-fluids management system”, J. Power Sources, 2006, 160 pp 1142-1155.
14.Park, S., Lee, J., W., N. Popov, B., “Effect of carbon loading in microporous layer on PEM fuel cell performance”, J. Power Sources, 2006, 163, pp 357-363.
15.O'Hayre, R., Cha, S. W., Colella, W., and Prinz, F. B., “Fuel Cell Fundamentals”, Wiley, 2005, pp 171.
16.Larminie, J., and Dicks, A., “Fuel Cell Systems Explained”, Wiley, 2000, pp.
17.Reshetenko, T., V., Kim, H., T., Lee, H., K., Jang, M., Y., Kweon, H., J., “Performance of a direct methanol fuel cell (DMFC) at low temperature: Cathode optimization”, J. Power Sources, 2006, 160, pp 925-932.
18.Giorgi, L., Antolini, E., Posio, A., Passalacqua, E., “Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells”, Electrochimica Acta, 1998, 43, pp 3675-3680.
19.Qi, Z.,and Kaufman, A., “Improvement of water management by a microporous sublayer for PEM fuel cells”, J. Power Sources, 2002, 109, pp 38-46.