簡易檢索 / 詳目顯示

研究生: 洪竟哲
Hung, Ching-Che
論文名稱: One-Pot Synthesis of Highly Luminescent Bimodal Alloyed [Cd1-xZnxSe1-ySy] Quantum Dots for Application in White Light Emitting Diodes
高效率雙峰分佈合金[Cd1-xZnxSe1-ySy]量子點之直接合成及其白光發光二極體之應用
指導教授: 陳學仕
Chen, Hsueh-Shin
黃金花
Huang, Jin-Hua
口試委員: 李紫原
Lee, Chi-Young
郭正亮
Kuo, Jheng-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 87
中文關鍵詞: 量子點合金雙發光白光發光二極體
外文關鍵詞: quantum dot, alloyed, bimodal, white light emitting diodes
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出首次以化學溶液反應法直接合成高效率雙峰分佈合金[Cd1-xZnxSe1-ySy]量子點,在一般的合成過程中,先將硒前驅物注入至高溫之鎘前驅物與鋅前驅物,合成雙峰分佈合金[Cd1-xZnxSe]核種,再注入硫前驅物,使雙峰分佈之核種進一步成長、進行殼層包覆,最後得到高效率雙峰分佈合金[Cd1-xZnxSe1-ySy]量子點。此外,雙峰分佈合金量子點之光致發光(PL)相對強度可藉由改變初始硒前驅物的注射量來控制,而雙峰分佈合金量子點之各別尺寸大小能利用不同硫前驅物之注入時間來控制。本論文也提出一合理之成長機制來解釋雙峰分佈合金量子點之製備及其性質之調控,我們以擁有特定大小或結構之奈米粒子被侷限於化學位能井的概念來解釋實驗中所觀察到的現象,並以一系列的實驗來證實化學位能井的存在以及其對於合成雙峰分佈合金量子點之重要性,這一成長模型提供我們進一步研究奈米晶粒成長機制的機會。最後,本論文顯示雙峰分佈合金量子點在白光發光二極體應用上之潛力,結合雙峰分佈合金量子點及藍光發光二極體可輕易製備白光發光二極體,而其色座標、演色性與色域可由改變合成雙峰分佈合金量子點之實驗參數來調控,此方法大大地簡化白光發光二極體之製程,也減少可能由額外的純化步驟或後處理所造成之汙染,因此,雙峰分佈合金量子點在照明和顯示器方面之應用是相當有潛力。


    We present a one-pot synthetic method to prepare alloyed [Cd1-xZnxSe1-ySy] quantum dots with controllable bimodal size distribution and high quantum efficiency for the first time. In a typical synthesis of bimodal alloyed quantum dots, alloyed [Cd1-xZnxSe] seeds consisting of two size distribution are prepared in the initial stage, followed by incorporation of sulfur precursor which promotes further growth and shelling processes. Finally, the bimodal alloyed [Cd1-xZnxSe1-ySy] quantum dots (QDs) with high quantum yield are obtained. The bimodal wavelength and relative photoluminescence intensity of bimodal QDs are controlled by experimental factors based on the thermodynamics and kinetics. We present that existence of chemical potential well for nanoparticles is a critical parameter to control the characteristics of the bimodal alloyed QDs. Finally, we demonstrate the potential of the as-prepared bimodal alloyed QDs in the application of white light emitting diodes (WLEDs) through coupling them with the blue-light InGaN chips. The color axis, color rendering index, and color gamut of the WLEDs are simply modified via changing the synthetic parameters without any post-mixing procedure. Hence, the fabricating process has been dramatically simplified, and the possible contamination from the purification process and environment may be reduced. The one-pot bimodal alloyed QDs based WLEDs definitely is a promising candidate in the lighting and display applications.

    中文摘要 1 Abstract 2 Acknowledgement 3 Table of Contents 5 List of Figures 6 I. Introduction 11 1.1 Overview 11 1.2 Semiconductor nanocrystals 11 1.3 Synthesis of quantum dots 17 1.3.1 Nucleation of nanocrystals 18 1.3.2 Growth of nanocrystals 21 1.3.3 Magic size of nanoclusters and nanocrystals 23 1.3.4 Core/shell structure for surface passivation 31 1.3.5 Alloyed semiconductor quantum dots 32 1.4 Scope of this work 36 II. Experimental Methods 38 2.1 Synthetic considerations for bimodal alloyed quantum dots 38 2.2 Nanocrystal synthesis and QD film preparation 39 2.3 Characterization techniques 42 2.3.1 Photophysical characterization 42 2.3.2 Size and morphology 45 2.3.3 Crystal structure 46 2.3.4 Chemical composition analysis 47 III. Results & Discussion 49 3.1 Synthesis of Bimodal Alloyed [Cd1-xZnxSe] Seeds in One Pot (Blank Experiment). 49 3.2 Synthesis of Bimodal Alloyed [Cd1-xZnxSe1-ySy] Quantum Dot in One Pot. 54 3.3 QD@PDMS freestanding film as a light convertor for white light emitting diode application 76 IV. Conclusions 79 V. References 81

    Weller, H., Colloidal semiconductor Q‐particles: chemistry in the transition region between solid state and molecules. Angew. Chem. Int. Ed. Engl. 1993, 32 (1), 41-53.
    Alivisatos, A. P., Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996, 100 (31), 13226-13239.
    Murray, C. B.; Kagan, C.; Bawendi, M., Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30 (1), 545-610.
    Colvin, V.; Schlamp, M.; Alivisatos, A., Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370 (6488), 354-357.
    Coe, S.; Woo, W. K.; Bawendi, M.; Bulović, V., Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420 (6917), 800-803.
    Chen, H. S.; Wang, S. J. J.; Lo, C. J.; Chi, J. Y., White-light emission from organics-capped ZnSe quantum dots and application in white-light-emitting diodes. Appl. Phys. Lett. 2005, 86 (13), 131905.
    Chen, H.-S.; Hsu, C.-K.; Hong, H.-Y., InGaN-CdSe-ZnSe quantum dots white LEDs. IEEE Photonics Technol Lett. 2006, 18 (1), 193-195.
    Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S., High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7 (5), 407-412.
    Pattantyus-Abraham, A. G.; Kramer, I. J.; Barkhouse, A. R.; Wang, X.; Konstantatos, G.; Debnath, R.; Levina, L.; Raabe, I.; Nazeeruddin, M. K.; Gratzel, M., Depleted-heterojunction colloidal quantum dot solar cells. ACS nano 2010, 4 (6), 3374-3380.
    Coropceanu, I.; Bawendi, M. G., Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency. Nano Lett. 2014, 14 (7), 4097-4101.
    Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H., Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442 (7099), 180-183.
    Klimov, V.; Mikhailovsky, A.; Xu, S.; Malko, A.; Hollingsworth, J.; Leatherdale, C.; Eisler, H.-J.; Bawendi, M., Optical gain and stimulated emission in nanocrystal quantum dots. Science 2000, 290 (5490), 314-317.
    Eisler, H.-J.; Sundar, V. C.; Bawendi, M. G.; Walsh, M.; Smith, H. I.; Klimov, V., Color-selective semiconductor nanocrystal laser. Appl. Phys. Lett. 2002, 80 (24), 4614-4616.
    Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P., Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281 (5385), 2013-2016.
    Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H., Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4 (6), 435-446.
    Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S., Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307 (5709), 538-544.
    Murray, C.; Norris, D. J.; Bawendi, M. G., Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115 (19), 8706-8715.
    Brus, L., A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 1983, 79 (11), 5566-5571.
    Brus, L. E., Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80 (9), 4403-4409.
    LaMer, V. K.; Dinegar, R. H., Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72 (11), 4847-4854.
    Peng, X.; Wickham, J.; Alivisatos, A., Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth:“focusing” of size distributions. J. Am. Chem. Soc. 1998, 120 (21), 5343-5344.
    Peng, Z. A.; Peng, X., Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J. Am. Chem. Soc. 2002, 124 (13), 3343-3353.
    Ham, F. S., Theory of diffusion-limited precipitation. J. Phys. Chem. Solids 1958, 6 (4), 335-351.
    Schmid, G.; Klein, N.; Morun, B.; Lehnert, A.; Malm, J.-O., Two, four, five-shell clusters and colloids. Pure Appl. Chem. 1990, 62 (6), 1175-1177.
    Vossmeyer, T.; Reck, G.; Katsikas, L.; Haupt, E., A" double-diamond superlattice" built up of Cd17S4(SCH2CH2OH)26 clusters. Science 1995, 267 (5203), 1476.
    Behrens, S.; Bettenhausen, M.; Deveson, A. C.; Eichhöfer, A.; Fenske, D.; Lohde, A.; Woggon, U., Synthesis and Structure of the Nanoclusters [Hg32Se14(SePh) 36],[Cd32Se14(SePh)36‐(PPh3) 4],[P(Et)2(Ph)C4H8OSiMe3]5‐[Cd18I17(PSiMe3)12], and [N (Et)3C4H8OSiMe3]5[Cd18I17(PSiMe3)12]. Angew. Chem. Int. Ed. Engl. 1996, 35 (19), 2215-2218.
    Soloviev, V.; Eichhöfer, A.; Fenske, D.; Banin, U., Size-dependent optical spectroscopy of a homologous series of CdSe cluster molecules. J. Am. Chem. Soc. 2001, 123 (10), 2354-2364.
    Yu, M.; Fernando, G.; Li, R.; Papadimitrakopoulos, F.; Shi, N.; Ramprasad, R., First principles study of CdSe quantum dots: stability, surface unsaturations, and experimental validation. Appl. Phys. Lett. 2006, 88 (23), 231910.
    Soloviev, V.; Eichhöfer, A.; Fenske, D.; Banin, U., Molecular limit of a bulk semiconductor: Size dependence of the “band gap” in CdSe cluster molecules. J. Am. Chem. Soc. 2000, 122 (11), 2673-2674.
    Chen, H. S.; Kumar, R. V., Discontinuous growth of colloidal CdSe nanocrystals in the magic structure. J. Phys. Chem. C 2008, 113 (1), 31-36.
    Chen, H. S.; Kumar, R. V., From nearly monodispersed toward truly monosized nanocrystals: chemical potential well during growth of nanocrystals. Cryst. Growth. Des. 2009, 9 (10), 4235-4238.
    Chen, H.-S.; Kumar, R. V., Direct synthesis of quantum dots with controllable multimodal size distribution. J. Phys. Chem. C 2009, 113 (28), 12236-12242.
    Dabbousi, B.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J.; Mattoussi, H.; Ober, R.; Jensen, K.; Bawendi, M., (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101 (46), 9463-9475.
    Hines, M. A.; Guyot-Sionnest, P., Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 1996, 100 (2), 468-471.
    Talapin, D. V.; Mekis, I.; Götzinger, S.; Kornowski, A.; Benson, O.; Weller, H., CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals. J. Phys. Chem. B 2004, 108 (49), 18826-18831.
    Xie, R.; Kolb, U.; Li, J.; Basché, T.; Mews, A., Synthesis and characterization of highly luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J. Am. Chem. Soc. 2005, 127 (20), 7480-7488.
    Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H., Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 2001, 1 (4), 207-211.
    Song, K.-K.; Lee, S., Highly luminescent (ZnSe) ZnS core-shell quantum dots for blue to UV emission: synthesis and characterization. Curr. Appl. Phys. 2001, 1 (2), 169-173.
    Chen, X.; Lou, Y.; Samia, A. C.; Burda, C., Coherency strain effects on the optical response of core/shell heteronanostructures. Nano Lett. 2003, 3 (6), 799-803.
    Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A., Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 1997, 119 (30), 7019-7029.
    Bailey, R. E.; Nie, S., Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 2003, 125 (23), 7100-7106.
    Zhong, X.; Han, M.; Dong, Z.; White, T. J.; Knoll, W., Composition-Tunable Znx Cd1-xSe Nanocrystals with High Luminescence and Stability. J. Am. Chem. Soc. 2003, 125 (28), 8589-8594.
    Swafford, L. A.; Weigand, L. A.; Bowers, M. J.; McBride, J. R.; Rapaport, J. L.; Watt, T. L.; Dixit, S. K.; Feldman, L. C.; Rosenthal, S. J., Homogeneously Alloyed CdSxSe1-x Nanocrystals: Synthesis, Characterization, and Composition/Size-Dependent Band Gap. J. Am. Chem. Soc. 2006, 128 (37), 12299-12306.
    Al-Salim, N.; Young, A. G.; Tilley, R. D.; McQuillan, A. J.; Xia, J., Synthesis of CdSeS nanocrystals in coordinating and noncoordinating solvents: Solvent's role in evolution of the optical and structural properties. Chem. Mater. 2007, 19 (21), 5185-5193.
    Deng, Z.; Yan, H.; Liu, Y., Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method. J. Am. Chem. Soc. 2009, 131 (49), 17744-17745.
    Regulacio, M. D.; Han, M.-Y., Composition-tunable alloyed semiconductor nanocrystals. Acc. Chem. Res. 2010, 43 (5), 621-630.
    Caruge, J.; Halpert, J.; Wood, V.; Bulović, V.; Bawendi, M., Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat. Photonics 2008, 2 (4), 247-250.
    Chen, Y.; Vela, J.; Htoon, H.; Casson, J. L.; Werder, D. J.; Bussian, D. A.; Klimov, V. I.; Hollingsworth, J. A., “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 2008, 130 (15), 5026-5027.
    Wang, X.; Ren, X.; Kahen, K.; Hahn, M. A.; Rajeswaran, M.; Maccagnano-Zacher, S.; Silcox, J.; Cragg, G. E.; Efros, A. L.; Krauss, T. D., Non-blinking semiconductor nanocrystals. Nature 2009, 459 (7247), 686-689.
    Bae, W. K.; Char, K.; Hur, H.; Lee, S., Single-step synthesis of quantum dots with chemical composition gradients. Chem. Mater. 2008, 20 (2), 531-539.
    Bae, W. K.; Kwak, J.; Park, J. W.; Char, K.; Lee, C.; Lee, S., Highly efficient green-light-emitting diodes based on CdSe@ZnS quantum dots with a chemical-composition gradient. Adv. Mater 2009, 21 (17), 1690-1694.
    Park, J.; An, K.; Hwang, Y.; Park, J.-G.; Noh, H.-J.; Kim, J.-Y.; Park, J.-H.; Hwang, N.-M.; Hyeon, T., Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3 (12), 891-895.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE