研究生: |
楊為琳 Yang, Wei-Lin |
---|---|
論文名稱: |
以低能量離子佈植製作之淺接面矽晶太陽能電池之研究 Study of Shallow Junction Crystalline Silicon Solar Cells Fabricated by Low-Energy Ion Implantation |
指導教授: |
王立康
Wang, Li-Karn |
口試委員: |
蔡松雨
Tsai, Song-Yeu 余沛慈 Yu, Pei-chen 甘炯耀 Gan, Jon-Yiew 巫勇賢 Wu, Yung-Hsien |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 87 |
中文關鍵詞: | 離子佈植 、化學濕式蝕刻 、少數載子生命週期 、選擇性射極 、單晶矽太陽電池 、片電阻 |
外文關鍵詞: | ion implantation, chemical etching, effective lifetime, selective emitter, silicon solar cell, sheet resistance |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體製程日益精進,其中離子佈植技術可活用植入的能量與劑量來形成高品質的淺接面太陽電池。一旦植入的能量設定越低,越多的摻雜原子則囤積於片子表面。在退火前使用濕式化學蝕刻可以輕易改變晶片表面的劑量。此調變表面劑量的方法可有效降低載子的複合速率。本研究利用這種劑量侷限的現象,使淺接面元件在單一個佈植參數的情況下做出多種摻雜濃度。試片分為全面及選擇性射極這兩種架構。這兩組射極結構各自分別進行兩種不同實驗流程,其程序為:1) 離子植入後的片子在退火前需經過濕式蝕刻; 2) 離子植入後的片子在退火後才進行濕式蝕刻。這兩種不同的蝕刻順序,在退火期間影響了片子內摻雜原子的密度。比較所有片子的少數載子壽命,發現退火前蝕刻的片子可提升至53.05 μs。其中選擇性射極的太陽電池具有明顯的藍移現象,進而提升元件之效率。
Ion implantation is an advanced technology developed to inject dopants for shallow junction formation. Due to the ion-induced sputtering effect at low implant energies where dopants tend to accumulate at the silicon surface, the excess ion doses can be easily removed via a surface chemical wet etching process. Modulating surface doses could enhance the collection of minority carriers through the substrate. By taking advantage of the dose limitation characteristic, this study proposed a novel method to form shallow emitters with various dopant densities. Each blanket and selective emitter structures with two process flows have been investigated: 1) Performing wet etch after implantation before junction anneal; 2) Performing wet etch after implantation and junction anneal. In the two process flows, we observed a difference in the density of doping impurities during the thermal process, which is related to the substrate recombination rates. Comparing the blanket emitter and selective emitter structures with two types of etching methods, the device with wet etch before annealing process achieved the best effective carrier lifetime of 53.05 μs, which led to a higher short circuit current density. Hence, this selective emitter cell demonstrated a better blue response and showed an improvement in the conversion efficiency.
[1] Yadav, P., Pandey, K., Bhatt, V., Kumar, M., and Kim, J., 2017. “Critical aspects of impedance spectroscopy in silicon solar cell characterization: A review,” Renew. Sust. Energ. Rev., 76, pp. 1562-1578.
[2] Jose, E., and Kumar, M. C. S., 2017. “Room temperature deposition of highly crystalline Cu-Zn-S thin films for solar cell applications using SILAR method,” J. Alloy. Compd., 712, pp. 649-656.
[3] Stuckelberger, M., Biron, R., Wyrsch, N., Haug, F. J., and Ballif, C., 2017. “Review: Progress in solar cells from hydrogenated amorphous silicon,” Renew. Sust. Energ. Rev., 76, pp. 1497-1523.
[4] Boccard, M., and Holman, Z. C., 2015. “Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells,” J. Appl. Phys., 118, pp. 065704.
[5] Belghachi, A., and Limam, N., 2017. “Effect of the absorber layer band-gap on CIGS solar cell,” Chin. J. Phys., 55, pp. 1127-1134.
[6] Fraga, D., Lyubenova, T. S., Martí, R., Calvet, I., Barrachina, E., and Carda, J. B., 2017. “Effect of alkali doping on CIGS photovoltaic ceramic tiles,” Sol. Energy, 147, pp. 1-7.
[7] Dabbabi, S., Nasr, T. B., and Turki, N. K., 2017. “Parameters optimization of CIGS solar cell using 2D physical modeling,” Results Phys., pp. 1-23.
[8] Hasegawa, F., 1970. “Deep Energy Levels in the High Resistance Region at GaAs Vapor Epitaxial Film-Substrate Interface,” Jpn. J. Appl. Phys., 9(6), pp. 638-646.
[9] Kumavat, P. P., Sonar, P., and Dalal, D. S., 2017. “An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements,” Renew. Sust. Energ. Rev., 78, pp. 1262-1287.
[10] Basu, P. K., Cunnusamy, J., Sarangi, D., and Boreland, M. B., 2014. “Novel selective emitter process using non-acidic etch-back for inline-diffused silicon wafer solar cells,” Renew. Energy, 66, pp. 69-77.
[11] Lee, E., Cho, K., Oh, D., Shim, J., Lee, H., Choi, J., Kim, J., Shin, J., Lee, S., and Lee, H., 2012. “Exceeding 19% efficient 6 inch screen printed crystalline silicon solar cells with selective emitter,” Renew. Energy, 42, pp. 95-98.
[12] Dastgheib-S, A., Haverkamp, H., Raabe, B., Book, F., and Hahn, G. 2008. “Selective Emitter for Industrial Solar Cell Production: A Wet Chemical Approach Using a Single Side Diffusion Process,” 23rd European Photovoltaic Solar Energy Conference and Exhibition, pp. 1197-1199.
[13] Kim, M., Kim, D., Kim, D., and Kang, Y., 2014. “Laser etch back process to fabricate highly efficient selective emitter c-Si solar cells,” Sol. Energy, 109, pp. 105-110.
[14] Prathap, P., Bartringer, J., and Slaoui, A., 2013. “Selective emitter formation by laser doping of spin-on sources,” Appl. Surf. Sci., 278, pp. 173-179.
[15] Rahman, M. Z., 2012. “Status of Selective Emitters for p-Type c-Si Solar Cells,” Optics and Photonics Journal, 2(2), pp. 129-134.
[16] Lin, H. Y., Chen, S. Y., Du, C. H., Yu, S. H., Adurodija, O. F., and Chang, H. Y., 2016. “Effects of Sheet Resistance on Selective Emitter Solar Cells by Laser Direct Doping,” IEEE 43rd Photovoltaic Specialists Conference, pp. 2464-2466.
[17] Lee, C., Chang, S., Chang, S., and Wu, C., 2013. “Fabrication of High-Efficiency Silicon Solar Cells by Ion Implant Process,” Int. J. Electrochem. Sci., 8, pp. 7634-7645.
[18] Cho, E., Ok, Y., Dahal, L., Das, A., Upadhyaya, V., and Rohatgi, A., 2016. “Comparison of POCl3 diffusion and phosphorus ion-implantation induced gettering in crystalline Si solar cells,” Sol. Energy Mater. Sol. Cells, 157, pp. 245-249.
[19] Elliman, R., and Williams, J., 2015. “Advances in ion beam modification of semiconductors,” Curr. Opin. Solid State Mat. Sci., 19(1), pp. 49-67.
[20] Chang, R., Liao, H., and Tai, C., 2017. “Anomalous rapid diffusion of phosphorus caused by heavily implanted carbon in pre-amorphized ultrashallow junctions,” Vacuum, 140, pp. 161-164.
[21] Impellizzeri, G., Mirabella, S., Romano, L., Napolitani, E., Carnera, A., Grimaldi, M., and Priolo, F., 2006. “Fluorine incorporation during Si solid phase epitaxy,” Nucl. Instrum. Methods Phys. Res. Sect. B, 242(1-2), pp. 614-616.
[22] Larson, L., Williams, J., and Current, M., 2011. “Ion Implantation for Semiconductor Doping and Materials Modification,” Rev. Accl. Sci. Tech., 4(1), pp. 11-40.
[23] Wolf, F. A., 2014. “Modeling of Annealing Processes for Ion-Implanted Single-Crystalline Silicon Solar Cells,” Ph.D. Dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg, pp. 98.
[24] Saleh, B., and Teich, M., 2007. “Fundamentals of Photonics,” (2nd ed.), John Wiley & Sons, pp. 650-651.
[25] Mehrer, H., 2007. “Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes,” Springer, pp. 27-35.
[26] Seebauer, E. G., and Allen, C. E., 1995. “Estimating surface diffusion coefficients,” Prog. Surf. Sci., 49(3), pp. 265-330.
[27] Smallman, R. E., and Ngan, A. H. W., 2014. “Modern Physical Metallurgy,” (8th ed.). Butterworth-Heinemann, pp. 287-299.
[28] “PN Junction Diode and its Characteristics,” (n.d.). Retrieved from Online Electrical Engineering Study Site: https://www.electrical4u.com/p-n-junction-diode
[29] Hu, C. C., 2009. “Modern Semiconductor Devices for Integrated Circuits,” (1st ed.), Pearson, pp. 89-93.
[30] DasGupta, N., and DasGupta, A., 2004. “Semiconductor Devices: Modelling and Technology,” Prentice-Hall of India Pvt.Ltd, pp. 30-31.
[31] Dittrich, T., 2014. “Materials Concepts for Solar Cells,” Imperial College Press, pp. 85-87.
[32] Vermang, B., 2012. “Aluminum oxide as negatively charged surface passivation for industrial crystalline silicon solar cells,” University of Leuven, pp 10-11.
[33] Vossier, A., Hirsch, B., and Gordon, J. M., 2010. “Is Auger recombination the ultimate performance limiter in concentrator solar cells?” Appl. Phys. Lett., 97, pp. 193509.
[34] Pukšec, J. D., 2002. “Recombination Processes and Holes and Electrons Lifetimes,” Automatika, 43(1-2), pp. 47-53.
[35] Pang, S. K., and Rohatgi, A., 1993. “A new methodology for separating Shockley–Read–Hall lifetime and Auger recombination coefficients from the photoconductivity decay technique,” J. Appl. Phys, 74, p. 5554.
[36] Liu, B., Chen, Y., Yang, Y., Chen, D., Feng, Z., Altermatt, P. P., Verlinden, P., Shen, H., 2016. “Improved evaluation of saturation currents and bulk lifetime in industrial Si solar cells by the quasi steady state photoconductance decay method,” Sol. Energy Mater. Sol. Cells, 149, pp. 258-265.
[37] Kamal, H., and Ghannam, M., 2015. “Influence of the Recombination Parameters at the Si/SiO2 Interface on the Ideality of the Dark Current of High Efficiency Silicon Solar Cells,” J. Semicond. Technol. Sci., 15(2), pp. 232-242.
[38] McIntosh, K. R., and Black, L. E., 2014. “On effective surface recombination parameters,” J. Appl. Phys., 116, pp. 014503.
[39] Black, L. E., 2016. “New Perspectives on Surface Passivation: Understanding the Si-Al2O3 Interface,” Springer, pp. 22-27.
[40] “Single Diode Equivalent Circuit Models,” (n.d.). Retrieved from PV Performance Modeling Collaborative: https://pvpmc.sandia.gov/modeling-steps/2-dc-module-iv/diode-equivalent-circuit-models
[41] Yan, J., 2015. “Handbook of Clean Energy Systems,” (Vol. 6). John Wiley & Sons, pp. 289-290.
[42] Cubas, J., Pindado, S., and Manuel, C. D., 2014. “Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function,” Energies, 7(7), pp. 4098-4115.
[43] Bartesaghi, D., Pe´rez, I. D. C., Kniepert, J., Roland, S., Turbiez, M., Neher, D., & Koster, L. J. A., 2015. “Competition between recombination and extraction of free charges determines the fill factor of organic solar cells,” Nat. Commun., 6, pp. 1-10.
[44] Khan, F., Baek, S. H., and Kim, J. H., 2016. “Wide range temperature dependence of analytical photovoltaic cell parameters for silicon solar cells under high illumination conditions,” Appl. Energy, 183, pp. 715-724.
[45] Singh, P., and Ravindra, N. M., 2012. “Temperature dependence of solar cell performance—an analysis,” Sol. Energy Mater. Sol. Cells, 101, pp. 36-45.
[46] Park, H., An, J., Song, J., Lee, M., Ahn, H., Jahnel, M., and Im, C., 2015. “Thickness-dependent internal quantum efficiency of narrow band-gap polymer-based solar cells,” Sol. Energy Mater. Sol. Cells, 143, pp. 242-249.
[47] Plummer, J. D., Deal, M. D., and Griffin, P. B., 2000. “Silicon VLSI Technology: Fundamentals, Practice and Modeling,” Pearson, pp. 451-500.
[48] Paul, H., 2013. “Nuclear stopping power and its impact on the determination of electronic stopping power,” AIP Conference Proceedings, 1525, p. 309.
[49] Wilson, R. G., 1981. “Channeling of 20–800‐keV arsenic ions in the〈110〉and the〈100〉directions of silicon, and the roles of electronic and nuclear stopping,” J. Appl. Phys., 52, pp. 3985.
[50] Ashworth, D. G., Oven, R., and Mundin, B., 1990. “Representation of ion implantation profiles by Pearson frequency distribution curves,” J. Phys. D: Appl. Phys., 23(7), pp. 870-876.
[51] Jahnel, F., Ryssel, H., Prinke, G., Hoffmann, K., Müller, K., Biersack, J., and Henkelmann, R., 1981. “Description of arsenic and boron profiles implanted in SiO2, Si3N4 and Si using Pearson distributions with four moments,” Nuclear Instruments and Methods, 182-183, pp. 223-229.
[52] Hirschman, K. D., “Silicon Processes: Ion Implant for ULSI,” (n.d.). Retrieved from University of Tennessee: http://web.utk.edu/~prack/Thin%20films/implant-2.pdf
[53] Simonton, R. B., Kamenitsa, D. E., and Ray, A. M., 1991. “Process control issues for ion implantation using large tilt angles,” Nucl. Instrum. Methods Phys. Res. Sect. B, 55(1-4), pp. 188-192.
[54] Maszara, W. P., and Rozgonyi, G. A., 1986. “Kinetics of damage production in silicon during self‐implantation,” J. Appl. Phys., 60, pp. 2310.
[55] Tamura, M., 1973. “Secondary defects in phosphorus-implanted silicon,” Appl. Phys. Lett., 23, pp. 651.
[56] Gaiduk, P. I., and Larsen, A. N., 1990. “Secondary defect evolution in ion‐implanted silicon,” J. Appl. Phys., 68, pp. 5081.
[57] Stolk, P. A., Gossmann, H. -J., Eaglesham, D. J., Jacobson, D. C., Rafferty, C. S., Gilmer, G. H., Jaraíz, M., Poate, J. M., Luftman, H. S., Haynes, T. E., 1997. “Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon,” J. Appl. Phys., 81, pp. 6031.
[58] Claverie, A., Giles, L. F., Omri, M., Mauduit, B. D., Assayag, G. B., and Mathiot, D., 1999. “Nucleation, growth and dissolution of extended defects in implanted Si: impact on dopant diffusion,” Nucl. Instrum. Methods Phys. Res. Sect. B, 147(1-4), pp. 1-12.
[59] Bazizi, E. M., Fazzini, P. F., Zechner, C., Tsibizov, A., Kheyrandish, H., Pakfar, A., Ciampolini, L., Tavernier, C., and Cristiano, F., 2008. “Modelling of Boron Trapping at End-of-Range defects in pre-amorphized ultra-shallow junctions,” Mater. Sci. Eng. B, 154-155, pp. 275-278.
[60] Tan, C. F., Chor, E. F., Lee, H., Liu, J., Quek, E., and Chan, L., 2006. “Defect suppression of indium end-of-range during solid phase epitaxy annealing using Si1−yCy in silicon,” Thin Solid Films, 504(1-2), pp. 132-135.
[61] Fletcher, J., Narayan, J., and Holland, O. W., 1981. “Studies of defects and solubility limits in SPE grown In and Sb implanted silicon,” Microscopy of Semiconducting Materials Conference, pp. 295-300.
[62] Noda, T., Vrancken, C., and Vandervorst, W., 2014. “Modeling of junction formation in scaled Si devices,” J. Comput. Electron, 13, pp. 33-39.
[63] Olson, G. L., and Roth, J. A., 1988. “Kinetics of solid phase crystallization in amorphous silicon,” Materials Science Reports, 3(1), pp. 1-77.
[64] Crowder, S. W., 1995. “Processing Physics in Silicon-on-Insulator Material,” Ph.D. Dissertation, Stanford University.
[65] Chao, H. S., Crowder, S. W., Griffin, P. B., and Plummer, J. D., 1996. “Species and dose dependence of ion implantation damage induced transient enhanced diffusion,” J. Appl. Phys., 79, pp. 2352.
[66] Jaraiz, M., Gilmer, G. H., Poate, J. M., and Rubia, T. D. D. L., 1996. “Atomistic calculations of ion implantation in Si: Point defect and transient enhanced diffusion phenomena,” Appl. Phys. Lett., 68, pp. 409.
[67] Stiebel, D., Pichler, P., and Cowern, N. E. B., 2001. “A reduced approach for modeling the influence of nanoclusters and {113} defects on transient enhanced diffusion,” Appl. Phys. Lett., 79, pp. 2654.
[68] Rücker, H., Heinemann, B., Bolze, D., Kurps, R., Krüger, D., Lippert, G., and Osten, H. J., 1999. “The impact of supersaturated carbon on transient enhanced diffusion,” Appl. Phys. Lett., 74, pp. 3377.
[69] Barroso, J. J., Rossi, J. O., and Ueda, M., 2001. “Plasma immersion ion implantation description using child current law,” AIP Conference Proceedings, 563, pp. 102.
[70] Kerr, M. J., Cuevas, A., and Sinton, R. A., 2002. “Generalized analysis of quasi-steady-state and transient decay open circuit voltage measurements,” J. Appl. Phys., 91, pp. 399.
[71] Ruffell, S., Mitchell, I. V., and Simpson, P. J., 2005. “Solid-phase epitaxial regrowth of amorphous layers in Si(100) created by low-energy, high-fluence phosphorus implantation,” J. Appl. Phys., 98, pp. 083522.
[72] Qin, S., Zhuang, K., Lu, S., Hu, Y. J., and McTeer, A., 2009. “Comparative Study of Self-Sputtering Effects of Different Boron-Based Low-Energy Doping Techniques,” IEEE Trans. Plasma Sci., 37(9), pp. 1760-1766.
[73] Hieslmair, H., Mandrell, L., Latchford, I., Chun, M., Sullivan, J., and Adibi, B., 2012. “High Throughput Ion-Implantation for Silicon Solar Cells,” Energy Procedia, 27, pp. 122-128.
[74] Florakis, A., Janssens, T., Posthuma, N., Delmotte, J., Douhard, B., Poortmans, J., & Vandervorst, W., 2013. “Simulation of the Phosphorus Profiles in a c-Si Solar Cell Fabricated Using POCl3 Diffusion or Ion Implantation and Annealing,” Energy Procedia, 38, pp. 263-269.
[75] Chang, R. D., Choi, P. S., Kwong, D. L., Gardner, M., and Chu, P. K., 2002. “Time Dependence of Phosphorus Diffusion and Dose Loss during Postimplantation Annealing at Low Temperatures,” Jpn. J. Appl. Phys., 41, pp. 1220-1223.
[76] Satta, A., Janssens, T., Clarysse, T., Simoen, E., Meuris, M., Benedetti, A., Hoflijk, I., Jaeger, B. D., Demeurisse, C., and Vandervorst, W., 2006. “P implantation doping of Ge: Diffusion, activation, and recrystallization,” J. Vac. Sci. Technol. B, 24, pp. 494.
[77] Wang, X., Yu, Y., and Ning, J., 2016. “Researching the silicon direct wafer bonding with interfacial SiO2 layer,” Journal of Semiconductors, 37(5), pp. 1-4.
[78] Lau, F., Mader, L., Mazure, C., Werner, Ch., and Orlowski, M., 1989. “A model for phosphorus segregation at the silicon-silicon dioxide interface,” Appl. Phys. A, 49(6), pp. 671-675.
[79] Schön, J., Abdollahinia, A., Müller, R., Benick, J., Hermle, M., Warta, W., & Schubert, M. C., 2013. “Predictive Simulation of Doping Processes for Silicon Solar Cells,” Energy Procedia, 38, pp. 312-320.
[80] Ruffell, S., Mitchell, I. V., and Simpson, P. J., 2005. “Annealing behavior of low-energy ion-implanted phosphorus in silicon,” J. Appl. Phys., 97, pp. 123518.
[81] Yang, W. L., Lin, T. Y., Lien, S. S., and Wang, L., 2016. “Low-energy ion implantation for shallow junction crystalline silicon solar cell,” Sol. Energy, 130, pp. 25-32.
[82] Terao, Y., Sasabe, H., and Adachi, C., 2007. “Correlation of hole mobility, exciton diffusion length, and solar cell characteristics in phthalocyanine/fullerene organic solar cells,” Appl. Phys. Lett., 90, pp. 103515.
[83] Lou, Y. S., and Wu, C. Y., 1994. “A self-consistent characterization methodology for Schottky-barrier diodes and ohmic contacts,” IEEE Trans. Electron Devices, 41(4), pp. 558-566.
[84] Porter, L. M., Teicher, A., and Meier, D. L., 2002. “Phosphorus-doped, silver-based pastes for self-doping ohmic contacts for crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells, 73(2), pp. 209-219.
[85] Hörteis, M., 2009. “Fine-Line Printed Contacts on Crystalline Silicon Solar Cells,” Ph.D. Dissertation, Fraunhofer Institut für Solare Energiesysteme, pp. 17-32.
[86] Dubé, C. E., Tsefrekas, B., Buzby, D., Tavares, R., Zhang, W., Gupta, A., Low, R. J., Skinner, W., and Mullin, J., 2011. “High efficiency selective emitter cells using patterned ion implantation,” Energy Procedia, 8, pp. 706-711.
[87] Sato, K., Mashimoto, S., and Watanabe, M., 2008. “300mm Wafer Stain Formation by Spin Etching,” ECS Trans., 16(6), pp. 303-308.
[88] Kim, K., Dhungel, S. K., Jung, S., Mangalaraj, D., and Yi, J., 2008. “Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication,” Sol. Energy Mater. Sol. Cells, 92(8), pp. 960-968.
[89] Reichel, C., Granek, F., Benick, J., Schultz-Wittmann, O., and Glunz, S. W., 2012. “Comparison of emitter saturation current densities determined by injection-dependent lifetime spectroscopy in high and low injection regimes,” Prog. Photovoltaics, 20(1), pp. 21-30.
[90] Solmi, S., Parisini, A., Angelucci, R., Armigliato, A., Nobili, D., and Moro, L., 1996. “Dopant and carrier concentration in Si in equilibrium with monoclinic SiP precipitates,” Phys. Rev. B, 53, pp. 7836.
[91] Bachi,-B. B., Fourmond, E., Papet, P., Bounaas, L., Nichiporuk, O., Quang, N. L., and Lemiti, M., 2012. “Higher emitter quality by reducing inactive phosphorus,” Sol. Energy Mater. Sol. Cells, 105, pp. 137-141.
[92] Sinton, R. A., and Cuevas, A., 1996. “Contactless determination of current–voltage characteristics and minority‐carrier lifetimes in semiconductors from quasi‐steady‐state photoconductance data,” Appl. Phys. Lett., 69, pp. 2510.
[93] Watahiki, T., Kobayashi, Y., Morioka, T., Nishimura, S., Niinobe, D., Nishimura, K., Tokioka, H., and Yamamuka, M., 2016. “Analysis of short circuit current loss in rear emitter crystalline Si solar cell,” J. Appl. Phys., 119, pp. 204501.