簡易檢索 / 詳目顯示

研究生: 林意紋
Lin, Yi -Wen
論文名稱: 燃燒虛擬實驗室的發展及其對學生科學學習成就和科學學習動機的影響
Developing and evaluating the effects of virtual laboratory of combustion on students’ achievement and motivation toward science learning
指導教授: 王姿陵
Wang, Tzu-Ling
唐文華
Tang, Wun Hua
口試委員: 賴慶三
Lai, Cing-San
盧玉玲
Lu, Yu-Ling
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 數理教育研究所
Graduate Institute of Mathematics and Science Education
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 102
中文關鍵詞: 虛擬實驗室虛擬實境擴增實境空氣與燃燒科學學習成就科學學習動機
外文關鍵詞: virtual laboratory, virtual reality, augmented reality, air and combustion, science learning achievement, science learning motivation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的在利用虛擬實境和擴增實境技術開發「燃燒虛擬實驗室」學習軟體,融入微觀粒子模型來協助學生理解複雜抽象的科學知識,並以數位遊戲式學習作為評量輔助,增加學生學習及挑戰的意願,學習軟體發展完成後,將探討學生在科學學習成就、及科學學習動機的影響。
    本系統以「燃燒」單元為主題,主要學習內容包含「空氣對燭火的影響」、「製造及檢驗氧氣的特性」、「燃燒三要素」,學習系統的執行程序為:在「虛擬實驗」或是「擴增實驗」時會操作擬真實驗;接著在「概念回顧」中統整與澄清科學概念;最後在「挑戰測驗」進行學習成果的檢視,若學生在「挑戰測驗」中有迷思概念,將會再次進入「概念回顧」進行該實驗的操作,使概念可以得到立即性的回饋。
    本學習系統的學習成效評估,以新竹市一所公立小學,五年級四個班級,共104位學生為研究對象,採準實驗設計,其中兩班50人為實驗組,進行虛擬實驗教學;另兩班54人為對照組,進行一般教學,教學時間為四節課共160分鐘。收集的資料包含「對本系統的滿意度」以及學生在使用本系統後的「空氣與燃燒成就測驗」、「科學學習動機量表」、前後測分數,以獨立樣本單因子共變數分析(One-way ANCOVA)進行資料分析以探討虛擬實驗教學成效。
    本研究的重要發現如下:
    一、學生對於「燃燒虛擬實驗室」的感受性,在「系統內容」、「介面設計」、「系統
    操作感想」三個向度皆呈現高滿意度,整體感受性亦呈現高滿意度。
    二、使用「燃燒虛擬實驗室」對學生在「燃燒」單元的科學學習成就顯著優於一般教
    學。也顯示使用「燃燒虛擬實驗室」對學生在「空氣對燭火的影響」、「製造及
    檢驗氧氣的特性」及「燃燒三要素」的科學學習成就顯著優於一般教學。
    三、使用「燃燒虛擬實驗室」對學生的科學學習動機顯著優於一般教學。


    The purpose of this study is to develop “combustion virtual laboratory” learning software through virtual reality and augmented reality technologies, incorporate a micro-particle model to assist students in understanding complex and abstract scientific knowledge, and use digital game learning as an assessment aid, thereby enhancing the learning and challenge intent of students. After the learning software development was complete, the impact on the science learning achievement and science learning motivation of students was explored.
    The system used the “combustion” unit as the theme. The main learning contents included: the “impact of air on candlelight”, “producing and testing the properties of oxygen”, and “the three elements of combustion”. The learning system execution procedures included: performing simulation experiments during ‘virtual experiments” or “augmented experiments”; compile and clarify scientific concepts in “Concept Review”; finally, examining learning results in “Challenge Test”. If the students showed misconceptions in the “Challenge Test”, they returned to the Concept Review” to perform the experiment, so as to obtain immediate feedbacks on the concept.
    The learning effectiveness assessment of this learning system adopted 104 students from four 5th grade classes of a public elementary school in Hsinchu City as the research participants. The quasi-experimental design was employed. 50 students from two of the classes were in the experimental group that received virtual experiment teaching; 54 students from the other two classes were in the control group that received regular teaching. The teaching time was four lessons, 160 minutes in total. The data collected included: “satisfaction towards this system” the “air and combustion achievement test” and “science learning motivation scale” pretest and posttest scores of the students before and after using this system. The one-way independent-samples ANCOVA was adopted to carry out data analysis and explore the effectiveness of virtual experiment teaching.
    The important findings in this study are as follows:
    1.In terms of the perceived “combustion virtual laboratory”, the students showed a high degree of satisfaction towards three dimensions: “system content”, “interface design”, and “system operation feedback”; the overall perception also showed a high degree of satisfaction.
    2.In terms of “combustion virtual laboratory” use, the science learning achievement of students in the “combustion unit” was significantly superior to that of regular teaching; moreover, in the light of “combustion virtual laboratory” use, the science learning achievement of students in the “impact of air on candlelight”, “producing and testing the properties of oxygen”, and “the three elements of combustion” was also significantly superior to that of regular teaching.
    3.In terms of “combustion virtual laboratory” use, the science learning motivation of students was significantly superior to that of regular teaching.

    第一章 緒論 .............................................1 第一節 研究動機 ...........................................1 第二節 研究目的與問題......................................2 第三節 研究範圍與限制 .....................................3 第四節 名詞釋義............................................3 第二章 文獻探討 ...........................................5 第一節 燃燒的迷思概念相關研究...............................5 第二節 虛擬實境 ...........................................9 第三節 擴增實境 ...........................................11 第四節 虛擬實境及擴增實境的優勢 ............................13 第五節 虛擬實境及擴增實境應用的實證研究 .....................16 第六節 數位遊戲式學習 ......................................26 第三章 系統開發流程設計.....................................32 第一節系統開發環境與工具 ...................................32 第二節 系統架構 ...........................................33 第三節 系統開發流程 .......................................34 第四節 系統內容與操作流程 .................................48 第五節 系統滿意度評估分析 .................................58 第四章 虛擬實驗系統學習成效評估..............................62 第一節 研究對象.............................................62 第二節 教學教材內容設計......................................62 第三節 研究設計 ...........................................65 第四節 研究工具 ...........................................66 第五節 資料收集與分析 ......................................70 第六節「燃燒虛擬實驗室」學習成效評估..........................70 第五章 結論與建議............................................78 參考文獻 ...................................................80 一、中文文獻 ...............................................80 二、英文文獻 ...............................................82 附 錄 ....................................................87 附錄一「燃燒虛擬實驗室」系統概念圖:製造及檢驗氧氣的特性....... 87 附錄二「燃燒虛擬實驗室」系統概念圖:燃燒三要素 ............... 88 附錄三 系統滿意度調查表......................................89 附錄四 「空氣與空氣與燃燒成就測驗」...........................91 附錄五 「科學學習動機量表」..................................94 附錄六 「空氣與燃燒」教學教案簡案............................96 附錄七「燃燒虛擬實驗室」使用操作說明及特色....................101

    一、中文文獻
    文爾雅(2018)。物質受熱變化虛擬實驗室的發展及其對學生科學學習成就、科學態度和
    認知負荷的影響。國立新竹教育大學數理教育所碩士論文,新竹市。
    王光平(2005)。以概念構圖之動態評量策略探究國小六年級學童「燃燒」概念的概念
    學習。國立台北師範學院自然科學教育所碩士論文,台北市。
    王秉程(2011)。應用擴增實境於兒童教育用品設計對海洋教育學習興趣影響之研究─ 以國小中年級學生為例。國立臺北教育大學數位科技設計學所碩士論文,台北市。
    王凱信(2014)。融入有關空氣與燃燒科學史之數位遊戲學習對國小五年級學童科學本質觀及認知學習成效之影響。國立臺北教育大學自然科學教育研究所碩士論文,台北市。
    王瓏真(2003)。中小學生對於燃燒之迷思概念研究。國立台中師範學院自然科學教育
    所碩士論文,台中市。
    古芝如(2013)。探討靜態、動態、結合動靜態視覺表徵融入教學對國小學生科學學習 成就和科學學習動機的影響。國立新竹教育大學科學教育所碩士論文,新竹市。
    余民寧(2004)。教育測驗與評量:成就測驗與教學評量。臺北市:心理。
    吳沂木(2004)。資訊科技融入自然與生活科技的3D虛擬實境教學之探究-以電與
    磁教學為例。國立台南大學自然科學教育所碩士論文,台南市。
    李俊銘(2004)。資訊科技融入國小自然領域虛擬實境教學之探究-以蚊子的一生與登
    革熱防治教學為例。國立臺南大學自然科學教育所碩士論文,台南市。
    李家勇(2016)。年級與性別對國小學生在「燃燒」相關概念學習的影響。國立新竹教
    育大學科學教育所碩士論文,新竹市。
    李淑玲(2017)。虛擬實境體感互動遊戲在早期療育之應用。輔具之友,41,21-26。
    李錦坤 (2005)。網路化科學推理學習對國小學生燃燒概念重建與推理能力推昇之影
    響。國立交通大學理學院網路學習所碩士論文,新竹市。
    林志勇、黃維信、宋文旭、許峻嘉(2005)。認識虛擬實境。台北:全華。
    林育陞 (2012)。以擴增實境技術為基礎之月相觀測學習系統。國立新竹教育大學資訊
    科學所碩士論文,新竹市。
    林郁捷 (2016)。數位遊戲式學習應用之學習成效-以國小六年級自然科「變動的大
    地」單元為例。樹德科技大學資訊工程所碩士論文,高雄市。
    張容君(2000)。電腦動畫促進中學生「燃燒」微觀粒子概念發展之研究。國立彰化
    師範大學科學教育所博士論文,未出版,彰化市。
    張基成、林冠佑(2016)。從傳統數位學習到遊戲式數位學習―學習成效、心流體驗與
    認知負荷。科學教育學刊,24(3),221-248。
    郭生玉(1995)。心理與教育測驗。臺北市:精華書局。
    郭國成(2002)。國小學童「燃燒」概念另有慨念之研究。國立屏東師範學院數理
    教育所碩士論文,屏東市。
    陳佳蓉(2016)。虛擬實境在奈米科技教學之應用—以形狀記憶合金為例。國立新竹教
    育大學人力資源與數位學習科技所碩士論文,新竹市。
    陳貞伃(2016)。利用情境式數位遊戲學習提升學生的科學概念與論證能力之研究-以「奇
    妙的光」單元為例。國立臺北教育大學自然科學教育所碩士論文,台北市。
    曾燕玲 (2006)。5E 學習環教學對國小六年級學童燃燒概念改變之研究。國立台北市
    立教育大學科學教育所碩士論文,台北市。
    黃秀美、黃雯雯、廖述盛、賴崇閔(2009)。3D 虛擬實境應用於醫學教育接受度之研
    究。教育心理學報,40(3),341-361。
    廖家瑜、連啟瑞、盧玉玲(2013)。國小學童月亮數位遊戲學習之發展與學習成效之評
    估。科學教育學刊,21(3),317-344。
    劉鄷璐(2013)。擴增實境校園蝴蝶生態系統之學習成效研究。國立新竹教育大學數位學
    習科技研究所碩士論文,新竹市。
    樂嘉文(2015)。擴增實境結合立體拼圖對國小地球科學學習之研究。國立臺北教育大
    學數位科技設計學所碩士論文,台北市。
    蔡秉昆(2011)。3D虛擬實境繪本電子書輔助月亮迷思概念課程學習效益之研究。國
    立臺中教育大學數位內容科技學所碩士論文,台中市。
    蔣盈姿 (2004)。以POE策略探究中小學生對物質「可燃性」的另有概念。未出版之碩 士論文,國立台中師範學院自然科學教育學所碩士論文,台中市。
    鄭仁傑(2010)。虛擬實驗室建構之研究-以大學普物年頓第二運動定律為例。國立
    台中教育大學科學應用與推廣學所碩士論文,台中市。
    鄭嘉鴻(2014)。數位學習環境與鷹架策略對國中凸透鏡成像單元學習成效與動機
    之影響。國立臺灣師範大學資訊教育所碩士論文,臺北市
    盧文顥(1991)。從粒子模型概念探討學生對於溶液概念之思考模式。國立台灣師範
    大學化學研究所碩士論文,臺北市。
    蕭天祐(2015)。遊戲式翻轉教學數位遊戲之動機激發與問題導引對科學概念建構之影
    響以國中理化科為例。國立交通大學理學院科技與數位學習所碩士論文,新竹
    錢昱豪(2003)。應用虛擬實境技術建構線上設計工作室之研究。國立成功大學工業設計所碩士論文,台南市。
    謝旻儕、林語瑄(2017)。虛擬實境與擴增實境在醫護實務與教育之應用。護理雜誌,64(6),12-18。
    嚴堯瀚(2016)。虛擬實境結合數位遊戲式學習提升學習動機之創作與研究 - 以化學元 素週期表為例。國立臺北科技大學互動媒體設計所碩士論文,台北市。
    蘇子傑(2011)。科學語言遊戲對燃燒之迷思概念改變的研究。國立臺中教育大學科學 應用與推廣學系科學教育所碩士論文,台中市。

    二、英文文獻
    Azuma, R. (1997). A survey of augmented reality. Presence:Teleoperators and Virtual Environments, 6(4), 355-385.
    Ausburn, L. J., & Ausburn, F. B. (2004). Desktop virtual reality: A powerful new technology
    for teaching and research in industrial teacher education. Journal of Industrial Teacher
    Education, 41(4), 33-58.
    Barak, M., Ashkar, T., & Dori, Y. J. (2011). Learning science via animated movies: Its effect
    on students’ thinking and motivation. Computers & Education, 56(3), 839-846.
    Bloom, B. S. (1956). Taxonomy of educational objetives: The classification of educational goals: Handbook I: Cognitive domain. New york: Wiley.
    Bressler, D. M., & Bodzin, A. M. (2013). A mixed methods assessment of students’ flow
    experiences during a mobile augmented reality science game. Journal of Computer
    Assisted Learning, 29(6), 505-517.
    Bouwma‐Gearhart, J., Stewart, J., & Brown, K. (2009). Student misapplication of a Gas‐like model to explain particle mvement in heated solids: Implications for curriculum and instruction towards students’ creation and revision of accurate explanatory models. International Journal of Science Education, 31(9), 1157-1174.
    Burdea, G. C., & Coiffet, P. (2003). Virtual reality technology. New Jersey: Wiley & Sons.
    Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are robust. Journal of the Learning Sciences, 14, 161-199.
    Chiang, T. H. C., Yang, S. J. H., & Hwang, G. -J. (2014). An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities. Educational Technology & Society, 17(4), 352-365.
    Cheng, C. H., & Su, C. H. (2012). A Game-based learning system for improving student’ s learning effectiveness in system analysis course. Procedia - Social and Behavioral Sciences, 31, 669-675.
    Chen, C. P., & Wang, C. H. (2015). Employing augmented-reality- embedded instruction to disperse the imparities of individual differences in earth science learning. Journal of Science Education and Technology, 24(6), 835-847.
    Chen, C. H., Yang, J. C., Shen, S., & Jeng, M. (2007). A desktop virtual reality earth motion system in astronomy education. Educational Technology & Society, 10(3), 289-304.
    Chen, S. W., Yang, C. H., Huang, K. S., & Fu, S. L. (2019). Digital games for learning energy conservation: A study of impacts on motivation, attention, and learning outcomes. Innovations in education and teaching international, 56(1), 66-76.
    Cheng, K. H., & Tsai, C. C. (2012). Affordances of Augmented Reality in Science Learning:
    Suggestions for future research. Journal of Science Education and Technology, 22(4), 449-462.
    Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
    Crosier, J. K., Cobb, S. V. G., & Wilson, J. R. (2000). Experimental comparison of VR with traditional teaching methods for teaching radioactivity. Education and Information Technologies, 5(4), 329-343.
    Dalgarno, B., & Hedberg, J. (2001). 3D learning environments in tertiary education. In Meeting At the Crossroads (pp.33-36). BMU, Melbourne: University of Melbourne for Computers in Learning in Tertiary Education.
    Dalgarno, B., & Lee, M. (2010). What are the learning affordances of 3‐D virtual environments? British Journal of Educational Technology, 41(1), 10-32.
    Dawley, L., & Dede, C. (2013). Situated learning in virtual worlds and immersive simulations. New York: Springer.
    Dede, C. (2009). Immersive interfaces for engagement and learning. Science, 323(5910), 66-69.
    Drascic, D., & Milgram, P. (1996). Perceptual issues in augmented reality. Proceedings of SPIE - The International Society for Optical Engineering 2653, 123-134.
    Dunleavy, M., Dede, C., & Mitchell, R. (2009). Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. Journal of Science Education and Technology, 18(1), 7-22.
    ElSayed, N. A. M., Zayed, H. H., & Sharawy, M. I. (2011). ARSC: Augmented reality student card An augmented reality solution for the education field. Computers & Education, 56(4), 1045-1061.
    Gabel, D. L., Stockton, J. D., Monaghan, D. L., & MaKinster, J. (2001). Changing children's conceptions of burning. School Science and Mathematics, 101(8), 439-451.
    Gavish, N., Gutiérrez, T., Webel, S., Rodríguez, J., Peveri, M., Bockholt, U., & Tecchia, F. (2015). Evaluating virtual reality and augmented reality training for industrial
    maintenance and assembly tasks. Interactive Learning Environments, 23(6), 778-798.
    Gee, J. P. (2009). Deep learning properties of good digital games: How far can they go? In
    Serious Games: Mechanisms and effects. London, England: Taylor &
    Francis .
    Grundy, S. J. I. (1991). A computer adventure game as a worthwhile educational experience.
    Interchange, 22(4), 41-55.
    Herpich, F., Guarese, R., & Tarouco, L. (2017). A Comparative analysis of augmented reality frameworks aimed at the development of educational applications. Creative Education, 8(9), 1433-1451.
    Hedberg, J., Harper, B. & Dalgarno, B. (2002). The contribution of 3D environments to conceptual understanding. In O. J. McKerrow(Eds.), Winds of Change in the Sea of Learning: Proceedings of the 19th Annual Conference of the Australasian Society for
    Computers in Learning in Tertiary Education Vol 1 (pp. 149-158). Auckland, New Zealand: UNITEC, Institute of Technology
    Hitt, A. M., & Townsend, J. S. (2015). The heat is on! Using particle models to change
    students’ conceptions of heat and temperature. Science Activities Classroom Projects
    and Curriculum Ideas, 52(2), 45-52.
    Huang, K. T., Ball, C., Francis, J., Ratan, R., Boumis, J., & Fordham, J. (2019). Augmented versus virtual reality in education: An exploratory study examining science knowledge retention when using augmented reality/virtual reality mobile applications. Cyberpsychology, Behavior, and Social Networking, 22(2), 105-110.
    Jang, S., Vitale, J. M., Jyung, R. W., & Black, J. B. (2017). Direct manipulation is better than passive viewing for learning anatomy in a three-dimensional virtual reality environment. Computers & Education, 106(1), 150-165.
    Jong, B. S., Lai, C. H., Hsia, Y. T., Lin, T. W., & Lu, C. Y. (2013). Using game-based cooperative learning to improve learning motivation: A study of online game use in an operating systems course. IEEE Transactions on Education, 56(2), 183-190.
    José I, R. S., & Ángel, A. G.(2018). Virtual and augmented reality: Applications for the learning of technical historical heritage. Computer Applications in Engineering Education, 26(5), 1725-1733.
    Kafai, Y. (2005). The classroom as" living laboratory ": Design-based research for
    understanding, comparing, and evaluating learning science through design.
    Educational Technology, 45(1), 28-34.
    Kang, S. C., Chan, Y. C., Lu, C. Y., Lai, J. S., & Lee, T.H. (2013). Development of virtual equipment: Case study of the venturi tube experiment. Journal of Professional Issues in Engineering Education and Practice, 139(4), 281-289.
    Ke, F. (2008). Alternative goal structures for computer game-based learning. International Journal of Computer-Supported Collaborative Learning, 3(4), 429-445.
    Kerawalla, L., Luckin, R., Seljeflot, S., & Woolard, A. (2006). “Making it real”: Exploring the potential of augmented reality for teaching primary school science. Virtual Reality, 10(3), 163-174.
    Ketelhut, D. J., Nelson, B., Schifter, C., & Kim, Y. (2013). Improving science assessments by situating them in a virtual environment. Education Sciences, 3(2), 172-192.
    Kiili, K. (2007). Foundation for problem‐based gaming. British Journal of Educational Technology, 38(3), 394-404.
    Kiili, K., & Ketamo, H. (2018). Evaluating cognitive and affective outcomes of a digital game-based math test. IEEE Transactions on Learning Technologies, 11(2), 255-263.
    Kirriemuir, J., & McFarlane, A. (2004). Literature review in games and learning. Bristol: Nesta Futurelab.
    Klopfer, E., & Squire, K. (2008). Environmental detectives-the development of an augmented reality platform for environmental simulations. Educational Technology Research and Development, 56(2), 203-228.
    Kozhevnikov, M., Gurlitt, J., & Kozhevnikov, M. (2013). Learning relative motion concepts in immersive and non-immersive virtual environments. Journal of Science Education and Technology, 22(6), 952-962.
    Lai, A. F., Chen, C. H., & Lee, G. Y(2019). An augmented reality-based learning approach to enhancing students’ science reading performances from the perspective of the cognitive load theory. British Journal of Educational Technology, 50(1), 232-247.
    Lee, H. (2004). An example of the interaction between virtual and physical experiments in dynamics. International Journal of Mechanical Engineering Education, 32(2), 93-99.
    Lee, E. A. L., & Wong, K. W. (2014). Learning with desktop virtual reality: Low spatial ability learners are more positively affected. Computers & Education, 79(6), 49-58.
    Lee, E. A. L., Wong, K. W., & Fung, C. (2010). How does desktop virtual reality enhance learning outcomes? A structural equation modeling approach. Computers &Education, 55(4), 1424-1442.
    Lynch, T., & Ghergulescu, I. (2017). Review of virtual labs as the emerging technologies for teaching STEM subjects. Proceedings of the eleventh International Technology, Education and Development Conference, 6082-6091.
    Meheut, M. (1985). Pupils’(11‐12 year olds) conceptions of combustion. Research in Science Education, 22(1), 331-340.
    Mishra, P., Foster, A. N. (2007). The claims of games: A comprehensive review and directions for future research. In R. Carlsen, K. McFerrin, J. Price, R. Weber & D. A. Willis (Eds.) Society for Information Technology & Teacher Education: 2007 18th International Conference, San Antonio, TX.
    Milgram, P., & Kishino, F.(1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information Systems, 77(12), 1321-1329.
    Moreno, G. P., Burgos, D., Martínez-Ortiz, I., Sierra, J. L., & Fernández-Manjón, B. (2008). Educational game design for online education. Computers in Human Behavior, 24(6), 2530-2540.
    Papastergiou, M. (2009). Digital game-based learning in high school computer science education: Impact on educational effectiveness and student motivation. Computers & Education, 52(1), 1-12.
    Papagiannakis, G., Singh, G., & Magnenat-Thalmann, N.(2008). A survey of mobile and wireless technologies for augmented reality systems. Journal of Visualization and Computer Animation, 19, 3-22.
    Piaget, J. (1932). The Moral Judgment of the Child. Retrieved from https://books.google.com/books (Original work published 1932)
    Prensky, M. (2003). Digital game-based learning. Computers in Entertainment, 1(1), 21.
    Rau, P. L., Zhenga, J., Guoa, Z., Lib, J. (2018). Speed reading on virtual reality and augmented reality. Computers & Education, 125(20), 240-245.
    Schmidt, J. (2017, February 6). 8 Best augmented reality SDK for AR development for iOS and Android in 2017. Retrieved from Think Mobiles: https:// thinkmobiles.com/blog/best-ar-sdk-review/
    Squire, K., Barnett, M., Grant, J. M., & Higginbotham, T. (2004). Electromagnetism
    supercharged!Learning physics with digital simulation games. Proceedings of the
    2004 International Conference on Learning Sciences, 513-520.
    Stuart, S. (1996). The design of virtual environments. New York: McGraw- Hill.
    Stull, A. T. (2009). Anatomy learning in VR: A cognitive investigation. Santa Barbara: University of California.
    Stull, A. T., & Hegarty, M. (2016). Model manipulation and learning: Fostering representational competence with virtual and concrete models. Journal of Educational Psychology, 108(4), 509.
    Sural, I. (2018). Augmented reality experience: Initial perceptions of higher education students. International Journal of Instruction, 11(4), 565-576.
    Sweetser, P., & Wyeth, P. (2005). GameFlow: A model for evaluating player enjoyment in games. Computers in Entertainment, 3(3), 1-10.
    Tarng, W., Lin, H. W., & Ou, K. L. (2014). Design of a virtual ecological pond for motion-sensing game-based learning. International Journal of Computer Science & Information Technology, 6(2), 97-117.
    Tarng, W., Tsai, C. -H., Lin, C. -M., Lee, C. -M., & Liou, H. -H. (2015). Development of an educational virtual transmission electron microscope laboratory. Virtual Reality, 19(1), 33-44.
    Tarng,W., Ou, K. -L., Lu, Y. -C., Shih, Y.-S., & Liou, H. -H. (2018). A sun path observation
    system based on augment reality and mobile learning. Mobile Information Systems, 2018, 1-10.
    Wojciechowski, R., & Cellary, W. (2013). Evaluation of learners’ attitude toward learning in ARIES augmented reality environments. Computers & Education, 68(52), 570-585.
    Wu, H. -K., Lee, S. W. -Y., Chang, H. -Y., & Liang, J. -C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & Education, 62(7), 41-49.

    QR CODE