研究生: |
姚寧 Yao, Ning |
---|---|
論文名稱: |
單相雙向LCL換流器研製 Design and Implementation of Single-Phase Bi-Directional Inverter with LCL Filter |
指導教授: |
吳財福
Wu, Tsai-Fu |
口試委員: |
羅有綱
Yu-Kang Lo 陳鴻祺 Hung-Chi Chen 潘晴財 Ching-Tsai Pan 吳財福 Tsai-Fu Wu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 分佈式發電 、分切合整數位控制 、諧波失真 、LCL濾波器 |
外文關鍵詞: | Distributed generation, D-Σ digital control, harmonic distortion, LCL-filter |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
分切合整數位控制能夠精確追蹤參考電流命令並涵蓋寬廣感值變化,已成功應用於單相/三相雙向LC換流器。然而,當換流器操作在併網模式時,市電對電流諧波和因開關切換造成的電流漣波相當於短路,因此高頻的開關切換漣波會大量注入市電,而不能被LC濾波器中的濾波電容所吸收。為了避免漣波電流注入市電,提高電網電流品質,減少對電網的污染,需選用LCL濾波器。LCL濾波器存在著穩定性問題,容易發散和振盪,這將轉而導致電網電流失真。當市電存在顯著的電壓諧波時,同樣會影響電網電流,造成電網電流嚴重失真,並且濾波器中電容電流也會含有諧波成份。爲了使注入市電的電流是基頻弦波電流,換流器的電流追蹤命令必須被更新為新的參考電流,因此本研究提出了基於分切合整控制的電容電流補償機制,此控制機制將分切合整計算所得的參考電流命令與濾波電容電流相加得到新的參考電流命令,使得電流諧波能夠經靠近換流器之濾波電感來補償,從而降低電網電流諧波。經由詳細的理論分析與模擬驗證,此控制機制不僅可有效抑制市電諧波的影響,提高電網電流品質,而且使得換流器的輸出阻抗和電網阻抗在低頻到高頻都具有80°以上的相位裕度,並可以抑制39次高頻諧波電壓的影響,即使連接的電網阻抗較高,換流器也可正常運行。最後,實作出一部5 kW單相雙向換流器,並由實測結果驗證本研究之理論與可行性。
Division-Summation (D-Σ) digital control has been successfully applied to the single-phase bi-directional inverter with an LC filter, which can cover wide inductance variation and achieve precise inverter current tracking. However, high frequency ripple current injection to the grid cannot be avoided, and an LCL filter is therefore required. Since there typically exists grid voltage harmonics, the injected grid current will contain harmonic components due to the effect of the LCL-filter-capacitor. This paper presents an extended application of the D-Σ digital control associated with a filter-capacitor-current compensation to reduce the injected grid-current harmonics. The control laws of the inverter with the D-Σ digital control and compensation approach are derived in detail, and the reduction of grid-current harmonics is analyzed. With the proposed approaches, the phase margin between the output impedance of the inverter and grid impedance can be higher than 80° from low to high frequencies, and the inverter can achieve high harmonic voltage rejection ratio up to 39th harmonic, which is relatively suitable for weak grid condition. Experimental results measured from a 5 kW single-phase bi-directional inverter have verified the feasible application of the D-Σ digital control and proposed compensation.
參考文獻
[1] IEEE Application Guide for IEEE Std. 1547, IEEE Standard for Interconnecting Distributed Resources With Electric Power Systems, IEEE 1547.2-2008, 2009.
[2] IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, IEEE 519-1992, 1993.
[3] Y. Tang, P. Loh, P. Wang, F. Choo, and F. Gao, “Exploring inherent damping characteristic of LCL-filters for three-phase grid-connected voltage source inverters,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1433–1443, Mar. 2012.
[4] J. Dannehl, M. Liserre, and F. W. Fuchs, “Filter-based active damping of voltage source converters with LCL filter,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3623–3633, Aug. 2011.
[5] A. Cagnano, E. De Tuglie, M. Liserre, and R. A. Mastromauro, “Online optimal reactive power control strategy of PV inverters,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4549–4558, Oct. 2011.
[6] G. Shen, X. Zhu, J. Zhang, and D. Xu, “A new feedback method for PR current control of LCL-filter-based grid-connected inverter,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2033–2041, Jun. 2010.
[7] J. M. Espi, J. Castello, R. García-Gil, G. Garcera, and E. Figueres, “An adaptive robust predictive current control for three-phase grid-connected inverters,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3537–3546, Aug. 2011.
[8] Y. A. R. I. Mohamed, “Suppression of low- and high-frequency instabilities and grid-induced distortion and disturbances in distributed generation inverters,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3790–3803, Dec. 2011.
[9] J. He and Y. Li, “Generalized closed-loop control (GCC) schemes with embedded virtual impedances for voltage source converters with LC or LCL filters,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1850–1861, Apr. 2012.
[10] J. R. Massing, M. Stefanello, H. A. Grundling, and H. Pinheiro, “Adaptive current control for grid-connected converters with LCL filter,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4681–4693, Dec. 2012.
[11] F. Huerta, D. Pizarro, S. Cobreces, F. J. Rodriguez, C. Giron, and A. Rodriguez, “LQG servo controller for the current control of LCL grid-connected voltage-source converters,” IEEE Trans. Ind. Electron., vol. 59,no. 11, pp. 4272–4284, Nov. 2012.
[12] Y. Tang, P. Loh, P. Wang, F. Choo, F. Gao, and F. Blaabjerg, “Generalized design of high performance shunt active power filter with output LCL-filter,” IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 1443–1452, Mar. 2012.
[13] W. Wu, Y. He, T. Tang, and F. Blaabjerg, “A New Design Method for the Passive Damped LCL and LLCL Filter-Based Single-Phase Grid-Tied Inverter,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4339–4350, Oct. 2013.
[14] A. A. Rockhill, M. Liserre, R. Teodorescu, and P. Rodriguez, “Grid-filter design for a multimegawatt medium-voltage voltage-source inverter,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1205–1217, Apr. 2011.
[15] P. Channegowda and V. John, “Filter optimization for grid interactive voltage source inverters,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4106–4114, Dec. 2010.
[16] R. Turner, S. Walton, and R. Duke, “Stability and bandwidth implications of digitally controlled grid-connected parallel inverters,” IEEE Trans. Power Electron., vol. 57, no. 11, pp. 3685–3694, Nov. 2010.
[17] X. Wang, X. R, S. Liu and C.K. Tse, “Full feedforward of grid voltage for grid-connected inverter with LCL filter to suppress current distortion due to grid voltage harmonics,” IEEE Trans. on Power Electronics, vol. 25, no 12, pp. 3119-3127, April. 2010.
[18] Z. Zou, Z. Wang and M. Cheng “Modeling, analysis, and design of multifunction grid-interfaced inverters with output LCL filter” IEEE Trans. on Power Electronics, vol. 27, no 7, pp. 2830-2839, July 2014.
[19] J. R. Massing, M. Stefanello, H. A. Grundling, and H. Pinheiro, “Adaptive current control for grid-connected converters with LCL filter,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4681–4693, Dec. 2012.
[20] J. Sun “Impedance-based stability criterion for grid-connected inverters” IEEE Trans. on Power Electronics, vol. 26, no 11, pp. 3075-3078, Nov. 2011.
[21] D. Yang, X. Ruan and H. Wu, “Impedance shaping of the grid-connected inverter with LCL filter to improve its adaptability to the weak grid condition” IEEE Trans. on Power Electronics, 2014, Early Accept.
[23] T. F. Wu, C. H. Chang, L. C. Lin, and H. C. Hsieh, “D-Σ digital control for a three-phase transformerless bi-directional inverter with wide inductance variation,” in IEEE ECCE Asia, pp. 73-79, 2013
[24] “Magnetic Powder Cores Ver. 8,” www.changsung.com
[25] T. F. Wu, L. C. Lin, C. H. Chang, Y. L. Lin, and Y. C. Chang, “Current improvement for a 3ϕ bi-directional inverter with wide inductance variation,” in Proc. IEEE ECCE Asia, pp.1777-1784, 2011.
[26] 楊孟勳,「“市電併聯模式之雙向換流器研製”」,國立中正大學電機工程研究所碩士論文,2010年7月。
[27] 張瑞騏,「“雙向換流器之功因修正模式數位化控制”」,國立中正大學電機工程研究所碩士論文,2010年7月。
[28] 林彥佑,「“多功能單相換流器研製”」,國立中正大學電機工程研究所碩士論文,2012年7月。
[29] 蔡人傑,「“換流器操作模式平滑切換研究”」,國立中正大學電機工程研究所碩士論文,2013年