簡易檢索 / 詳目顯示

研究生: 翁國曜
Kuo-Yao Weng
論文名稱: 醫護點檢驗應用之自攜氣動源式實驗室晶片裝置開發
Developing Lab-on-a-chip Devices with Self-contained Pneumatic Power in Point-of-care Testing Application
指導教授: 程家維
Jya-Wei Cheng
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 74
中文關鍵詞: 醫護點檢驗實驗室晶片自攜氣動源式
外文關鍵詞: Point-of-care Testing, Lab-on-a-chip, Self-contained Pneumatic Power
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • We develop the novel single-use fluid transport means to deliver the sample and/or reagent to a fluidic channel, microreactor and/or a detection unit, thereby offering suitably flow rates coupled with minimal manual handling. Our fluidic actuating devices are able to pump a wide variety of fluids and gases and should be self-contained. Their applications for clinical chemistry, immunoassay and even genetic analysis are an area of active interest, for example point-of-care testing.
    In chapter 2, a vacuum capillary pneumatic actuation concept that can be used for point-of-care testing has been investigated. The vacuum glass capillaries are encapsulated within a laminated pouch and incorporated into the fluidic card. Vacuum glass capillaries broken by external force such as finger pressure; generate the pneumatic forces to induce liquid flow in the fluidic system. The sizes of vacuum capillary play a vital role in the pumping and metering functions of the system. The luteinizing hormone (LH) chromate- graphic immunoassay performances in the fluidic cards show consistency comparable to that obtained by manual micropipetting. The vacuum capillary pneumatic actuation will be applied in other complex handling step bioassays and lab-on-a-chip devices.
    In chapter 3, a pressurized gas capillary pneumatic actuation approach that can be used for point-of-care testing has been investigated. The pressurized gas glass capillaries are packaged within a PE tubing and incorporated into the fluidic chips. Gas glass capillaries broken by external force such as finger pressure, generate the pneumatic forces to drain liquid loaded in PE tubing into the fluidic chip. The carbonate dioxide gas of mixed chemicals in capillaries play a vital role in the pumping functions of the system. The C-reactive protein (CRP) fluorophore-linked sandwich immunoassay performances in the fluidic chips show consistency comparable to that obtained by manual syringe handling. The pressurized gas capillary pneumatic actuation will be applied in other complex handling steps involving saliva or blood sample preparation, nucleic acid assay and lab-on-a-chip devices.
    Chapter 4 provides a brief summary and future outlook.


    吾人發展一次性使用的流體輸送工具,能夠以適當的流速將樣品或試劑送達微管道、微反應器和檢測區,同時減少人員的操作需求。所開發的流體制動裝置有自攜氣動力能夠輸送各類液體與氣體,可應用於臨床化學、免疫分析與基因檢測等領域例如醫護點檢驗等。
    本文第二章中描述真空玻璃毛細管的制動概念,應用於醫護點檢驗實驗。將真空玻璃毛細管包封於護貝膜所製囊袋中,膠黏於內封免疫色層分析片的流體匣,真空玻璃毛細管藉由外力(如手指)折破後產生吸引定量液體流入免疫色層分析片上,進行呈色分析。真空玻璃毛細管產生的吸力具有輸送與定量液體的功能,量化分析在黃體形成素免疫色層分析片上呈色強度,證實真空玻璃毛細管所吸取液體效果與人工使用微量吸管一致。因此真空玻璃毛細管制動原理將可用於更複雜步驟的生物測定。
    在第三章裡提出氣壓玻璃毛細管的制動概念,有別於上章的吸力,氣壓玻璃毛細管利用預封檸檬酸與碳酸氫鈉水溶液,密封後離心混合兩液體,產生內填二氧化碳氣壓的玻璃毛細管。毛細管膠封於聚乙烯膠管中,藉由手指力折破後產生推送力,將定量液體依序輸送到C-反應蛋白螢光免疫晶片中,量化分析在晶片中C-反應蛋白呈色螢光強度,證實氣壓玻璃毛細管所推送液體效果與人工使用注射器注入效果一致。因此真空玻璃毛細管制動原理將可用於更複雜步驟的分析如核酸檢測上。
    簡要總結與未來研究方向列在文後第四章。

    中文摘要--------------------------------------------------------------------------------------------i Abstract ---------------------------------------------------------------------------------------------ii List of Tables --------------------------------------------------------------------------------------vi List of Figures ------------------------------------------------------------------------------------vii Chapter 1 Introduction --------------------------------------------------------------------------- 1 1-1 Introduction ----------------------------------------------------------------------------------- 1 1-2 Microfabrication Technology -------------------------------------------------------------- 11 1-3 Microfluidic unit operations ---------------------------------------------------------------- 14 1-4 Micropumps ---------------------------------------------------------------------------------- 16 1-5 Motivation for this study and Scope of the thesis --------------------------------------- 20 References ------------------------------------------------------------------------------------------ 22 Chapter 2 Triggering vacuum capillaries for pneumatic pumping and metering liquids in point-of-care immunoassays --------------------------------------------------------------- 23 2-1 Introduction ----------------------------------------------------------------------------------- 23 2-2 Device concept and design ------------------------------------------------------------------ 28 2-3 Materials and methods ------------------------------------------------------------------------29 Materials ---------------------------------------------------------------------------------------29 Fabrication of vacuum capillaries and metering volume test --------------------------29 Assembly of fluidic cards with analytical strips -----------------------------------------30 Fluidic card immunoassay and immunochromatographic analyses--------------------30 2-4 Results and discussion ------------------------------------------------------------------------32 Metering volume of vacuum capillaries --------------------------------------------------32 Variation source of the vacuum glass capillaries ----------------------------------------32 Immunochromatographic analyses --------------------------------------------------------33 2-5 Conclusions ------------------------------------------------------------------------------------36 References ------------------------------------------------------------------------------------------ 37 Chapter 3 Pressurized gas capillaries for driving liquids on C-reactive protein immunoassay in lab-on-a-chip systems -------------------------------------------------------- 45 3-1 Introduction ------------------------------------------------------------------------------------ 45 3-2 Device concept and design ------------------------------------------------------------------ 50 3-3 Materials and methods ------------------------------------------------------------------------51 Materials ---------------------------------------------------------------------------------------51 Fabrication of pressurized gas capillaries and draining volume test ------------------52 Fabrication of fluidic chips and antibody immobilization ------------------------------53 Assembly of fluidic chips with pressurized gas capillaries and Immunoassay in fluidic chips -----------------------------------------------------------------------------------54 3-4 Results and discussion ------------------------------------------------------------------------56 Draining volume of pressurized gas capillaries ------------------------------------------56 Cutting plotter and laminator processes for fluidic chip fabrication ------------------57 Fluorophore-Linked sandwich immunoassay analyses ---------------------------------58 3-5 Conclusions ------------------------------------------------------------------------------------60 References ------------------------------------------------------------------------------------------ 61 Chapter 4 Summary and future outlook ---------------------------------------------------------73

    Chapter 1
    1. A. J. Tudos, G. A. J. Besselink and R. B. M. Schasfoort, Lab Chip, 2001, 1, 83-95.
    2. J. Y. Park and L. J. Kricka, Lab Chip, 2007, 7, 547-549.
    3. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam and B. H. Weigl, Nature, 2006, 442, 412-418.
    4. A. Manz, Y. Miyahara, J. Miura, Y. Watanabe, H. Miyagi and K. Sato, Sens. Actuators, B, 1990, 1, 249-255.
    5. D. R. Reyes, D. Iossifidis, P.-A. Auroux and A. Manz, Anal Chem, 2002, 74, 2623-2636.
    6. P.-A. Auroux, D. Iossifidis, D. R. Reyes and A. Manz, Anal Chem, 2002, 74, 2637-2652.
    7. T. Vilkner, D. Janasek and A. Manz, Anal Chem, 2004, 76, 3373-3386.
    8. H. Becker and L. E. Locascio, Talanta, 2002, 56, 267-287.
    9. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A., Schueller and G. M. Whitesides, Electrophoresis, 2000, 21, 27-40.
    10. J. M. K. Ng, I. Gitlin, A. D. Stroock and G. M. Whitesides, Electrophoresis, 2002, 23, 3461-3473.
    11. C. A. Emrich, H. Tian, I. L. Medintz and R. A. Mathies, Anal Chem, 2002, 74, 5076 -5083.
    12. J. H. Aborn, S. A. El-Difrawy, M. Novotny, E. A. Gismondi and etc., Lab Chip, 2005, 5, 669 - 674.
    13. D. Juncker, H. Schmid, U. Drechsler, H. Wolf, M. Wolf, B. Michel, N. d. Rooij and E. Delamarche, Anal Chem, 2002, 74, 6139-6144.
    14. V. Linder, S. K. Sia and G. M. Whitesides, Anal Chem, 2005, 77, 64-71.
    15. R. H. Liu, J. Yang, R. Lenigk, J. Bonanno and P. Grodzinski, Anal Chem, 2004, 76, 1824-1831.
    16. J. S. Marcus, W. F. Anderson and S. R. Quake, Anal Chem, 2006, 78, 3084-3089.
    17. W. R. Rodriguez, N. Christodoulides, P. N. Floriano, S. Graham, S. Mohanty, M. Dixon, M. Hsiang, T. Peter, S. Zavahir, I. Thior, D. Romanovicz, B. Bernard, A. P. Goodey, B. D. Walker and J. T. McDevitt, PLoS Med., 2005, 2, 663-672.
    18. J. Voldman, M. L. Gray and M. A. Schmidt, Annu Rev Biomed Eng, 1999, 1, 401-425.
    19. D. J. Laser and J. G. Santiago, J. Micromech. Microeng., 2004, 14, R35-R64.
    20. P. Woias, Sens. Actuators, B, 2005, 105, 28-38.
    21. N.-T. Nguyen and Z. Wu, J Micromech Microeng, 2005, 15, R1-R16.
    22. V. Hessel, H. Lowe and F. Schonfeld, Chem. Eng. Sci., 2005, 60, 2479-2501.
    23. K. W. Oh and C. H. Ahn, J Micromech Microeng, 2006, 16, R13-R39.
    24. S. Haeberlea and R. Zengerle, Lab Chip, 2007, 7, 1094-1110.
    25. J. V. Zoval and M. J. Madou, Proceedings of the IEEE, 2004, 92, 140-153.

    Chapter 2
    1 E. Jacobs, J. C. Arbique, L. J. Dunka and C. Hackett, Point-of-Care In Vitro Diagnostic (IVD) Testing; Approved Guideline-Second Edition, Clinical and Laboratory Standards Institute (CLSI, formerly NCCLS), Pennsylvania, 2006.
    2 P. S. Dittrich, K. Tachikawa and A. Manz, Anal. Chem., 2006, 78, 3887–3908.
    3 D. J. Laser and J. G. Santiago, J. Micromech. Microeng., 2004, 14, R35–R64.
    4 K. Y. Weng, in Proceedings of the Micro Total Analysis Systems 2001 Symposium, ed. J. M. Ramsey and A. van den Berg, Kluwer Academic Pulishers, Monterey, CA, USA, 2001, pp. 409–410.
    5 C.-C. Hong, S. Murugesan, S. Kim, G. Beaucage, J.-W. Choi and C. H. Ahn, Proceedings of the 16th IEEE MEMS Workshop (MEMS 03), Kyoto, Japan, 2003, pp. 16–19.
    6 C. Rossi and D. Esteve, Sens. Actuators, A, 2005, 120, 297–310.
    7 C.-C. Hong, J.-W. Choi and C. H. Ahn, J. Micromech. Microeng., 2007, 17, 410–417.
    8 K. Handique, D. T. Burke, C. H. Mastrangelo and M. A. Burns, Anal. Chem., 2000, 72, 4781–4785.
    9 M. Yamada and M. Seki, Anal. Chem., 2004, 76, 895–899.
    10 K. Hosokawa, M. Omata, K. Sato and M. Maeda, Lab Chip, 2006, 6, 236–241.
    11 J.-H. Cho, E.-H. Paek, I.-H. Cho and S.-H. Paek, Anal. Chem, 2005, 77, 4091–4097.
    12 V. Linder, S. K. Sia and a. G. M. Whitesides, Anal. Chem., 2005, 77, 64–71.

    Chapter 3
    1. A. Bhattacharyya and C. M. Klapperich, Biomed. Microdevices, 2007, 9, 245-251.
    2. K. Handique, D. T. Burke, C. H. Mastrangelo and M. A. Burns, Anal Chem, 2001, 73, 1831-1838.
    3. D. J. Laser and J. G. Santiago, J. Micromech. Microeng., 2004, 14, R35-R64.
    4. K. Y. Weng, in Proceedings of the Micro Total Analysis Systems 2001 Symposium, ed.J. M. Ramsey and A. van den Berg, Kluwer Academic Pulishers, Monterey, CA, USA, 21-25 October 2001, pp. 409-410.
    5. C.-C. Hong, S. Murugesan, S. Kim, G. Beaucage, J.-W. Choi and C. H. Ahn, in Proceedings of the 16th IEEE MEMS Workshop (MEMS '03), Kyoto, Japan, January 19-23, pp. 16-19.
    6. Y. H. Choi and S. S. Lee, in Micro Total Analysis Systems 2003 Symposium, California, USA, 5-9 October 2003, pp. 611-614.
    7. Y. H. Choi, S. U. Son and S. S. Lee, in Technical Digest, IEEE 6th International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, 19-23 January 2003, pp. 116-119.
    8. Y. H. Choi, S. U. Son and S. S. Lee, Sens. Actuators, A, 2004, 111, 8-13.
    9. C.-C. Hong, J.-W. Choi and C. H. Ahn, J Micromech Microeng, 2007, 17, 410-417.
    10. V. Linder, S. K. Sia and G. M. Whitesides, Anal Chem, 2005, 77, 64-71.
    11. J. Voldman, M. L. Gray and M. A. Schmidt, Annu Rev Biomed Eng, 1999, 1, 401-425.
    12. Y. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. , 1998, 28, 153-184.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE