簡易檢索 / 詳目顯示

研究生: 張為強
Wei -Ciang Chang
論文名稱: Multi-element determination of heavy metals in liquid samples by laser ablation inductively coupled plasma mass spectrometry
利用雷射剝蝕感應耦合電漿質譜儀分析液體樣品中的重金屬元素
指導教授: 王竹方
Chu-Fang Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 69
中文關鍵詞: 多元素分析微量金屬雷射剝蝕雷射剝蝕感應耦合電漿質譜儀
外文關鍵詞: Multi-element determination, Trace metals, Laser ablation, LA-ICP-MS
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雷射剝蝕技術常應用於固體樣品分析,雷射剝蝕結合感應耦合電漿質譜儀 (LA-ICP-MS)為一具有強而有力的分析技術。LA-ICP-MS 的優點包括:可以直接分析固體樣品、具有高靈敏度、樣品分析速度快、可進行微區分析和縱深分析。本研究將液體樣品預先與甲基藍 (Methylene blue) 混合,定體積的樣品滴於鐵氟龍濾紙上,並將其乾燥後,以LA-ICP-MS進行定量分析。本研究所提出之分析技術,可同時分析多種元素含量,且幾乎不需要額外的樣品前處理程序,因此,可避免因為形成揮發性物質而使待測物遺失,同時也降低污染導入的風險;此外,在五分鐘內,可以同時完成濾紙樣品上15個元素的分析。研究結果發現,在雷射波長213 nm 的狀態下,將雷射系統參數做以下的設定:100%雷射能量,2 mm 離焦距離(defocus distance),20 Hz 重複速率(repetition rate) 和8秒停留時間(dwell time),可以將乾掉的液滴樣品完全剝蝕。本研究利用外標法和標準添加法進行LA-ICP-MS定量分析的研究,研究結果顯示,可得到很好的精密度(RSD<10%)和高回收率(95-105 %),另外檢量線線性的相關係數皆很高(0.9922-0.9998),偵測極限可低至0.04-0.81 ng mL-1,因此本研究所提出之分析技術在未來可以應用於任何液體樣品的定量分析。本研究亦針對真實環境樣品進行採樣分析,包括瓶裝水、自來水、游泳池水、湖水和模擬廢水;實驗結果顯示,儘管是在高濃度的有機物和無機物的基質中,待測物的訊號並不太會受到影響。


    Laser ablation is most frequently applied to the analysis of solid samples. A combination of laser ablation (LA) with inductively coupled plasma mass spectrometry (ICP-MS) is one of the most powerful analytical techniques. LA-ICP-MS is advantageous because of its direct solid sampling capability, high sensitivity, fast analysis, microanalysis, and depth profiling capabilities. In this study, dried microdroplets of sample, previously mixed with methylene blue matrix, were quantitatively ablated from a PTFE (polytetrafluoroethylene) filter. The developed method needed nearly no sample pre-treatment for determining elements, therefore, the losses due to the formation of volatile compounds and presence of contaminants could be negligible. In addition, up to fifteen elements on a single filter sample can be determined within 5 min. It was found that a 213 nm laser with 100% laser energy and 2 mm defocus distance, at 20 Hz repetition rate and 8 seconds dwell time can ablate the dried droplet samples appropriately. Both the external standard and standard addition were applied for quantification by LA-ICP-MS. A good precision (RSD<10 %) and high recovery (95-105 %) can be obtained in this research. The high correlation coefficients (0.9922-0.9998) and low detection limits (0.04-0.81 ng mL-1) for most elements of interest showed that this method would be useful for future quantification in any kind of liquid samples. The proposed method was applied to real environmental samples, such as bottled water, tap water, swimming pool water, lake water and simulated wastewater. The results indicate that both inorganic salts and organic matrics cause negligible effect on signals even in high concentration.

    Conference Presentations………………………………………………I 中文摘要………………………………………………………………II Abstract………………………….………………………..……III 謝誌..........................................................................................................IV Content Index…………………….…………………………….…...…..V Table Index…………………….……………………….....……….…VIII Figure Index…………………….…………………………..……….....IX Chapter 1 Introduction………………….…………………...................1 1.1 General overview………………….….…………………………1 1.2 Aims of this study………………….…….………………………3 Chapter 2 Literature review………………….………...………………4 2.1 Heavy metal effects on human health and environment………………4 2.2 Instrument………………….…………………………….……….7 2.2.1 The development and application of ICP-MS………………….7 2.2.2 The development and application of LA-ICP-MS……..……….9 2.3 The interferences of ICP-MS…….…………………………...……11 2.3.1 Spectroscopic interference…….……………….……………11 2.3.2 Non-spectroscopic interference…….……………..…………14 2.4 Elemental fractionation….……………………….……………….15 2.5 Matrix modifier….…………………….…........…………………17 Chapter 3 Experimental design.…………………..…….……………19 3.1 Apparatus..….…………………….…….………………………..19 3.2 Principle of LA-ICP-MS….…………….……..……….…………20 3.2.1 Laser system….…………………………...………………20 3.2.2 Inductively coupled plasma….………….……………….…21 3.2.3 Quadrupole mass spectrometer………….…………………22 3.3 Reagent and material….…………………..…….………………25 3.4 Experimental procedure….…………………………….………..26 3.4.1 Flowchart of experimental procedure…………….…26 3.4.2 Calibration strategies in LA-ICP-MS………………………28 3.4.2.1 External calibration method…………………………28 3.4.2.2 Standard addition calibration method…………..……28 3.4.3 Preparation of various Methylene Blue (MB) and NaCl concentrations…………………..…….……………….…29 3.4.4 Sample preparation for liquid sample………………………29 3.4.5 Sample preparation for simulated semiconductor industrial wastewater……………………………………………………..…30 Chapter 4 Results and discussion………….………….………………31 4.1 Optimization of the instrument parameters……………...…………31 4.1.1 Laser energy……………………………….……………….35 4.1.2 Dwell time………………………………………………….36 4.1.3 Defocus distance……………………………………………38 4.2 Quality control………………….………………..………………41 4.2.1 External calibration curve, correlation coefficient (R2), detection limit (DL), and recovery test………….……………….……41 4.2.2 Standard addition calibration curve…………………………44 4.3 Effect of matrix modifier…………………………………………46 4.3.1 The effect of methylene blue……………………………46 4.3.2 The effect of various NaCl concentrations on signal intensity..48 4.4 Real sample analysis…………………………………………….50 4.4.1 Real samples analysis by LA-ICP-MS and conventional ICP-MS…………..……………………………………50 4.4.2 Analysis of simulated wastewater by LA-ICP-MS……….…..53 4.5 Standard operating procedure……………………………………………55 Chapter 5 Conclusions and future directions……….….……………55 5.1 Conclusions………………….………………………...…………57 5.2 Future directions……………………………….…………………58 Reference……………………………………….....................…………59 Appendix……………………………………………………………….63

    Ammann, A. A. (2007). "Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool." Journal of Mass Sectrometry 42: 419-427.
    Ardelt, D., et al. (2005). "Analysis of waste water, soil and sewage sludge by ICP OES." LabPlus international-November 2005.
    Becker, J. S., et al. (2005). "Imaging of Copper, Zinc, and Other Elements in Thin Section of Human Brain Samples (Hippocampus) by Laser Ablation Inductively Coupled Plasma Mass Spectrometry." Analytical Chemistry 77: 3208-3216.
    Chen, Z., et al. (2007). "Removal of interferences in the speciation of chromium using an octopole reaction system in ion chromatography with inductively coupled plasma mass spectrometry." Talanta 73: 948-952.
    Cizdziel, J. V. (2007). "Determination of lead in blood by laser ablation ICP-TOF-MS analysis of blood spotted and dried on filter paper: a feasibility study." Anal Bioanal Chem 388: 603-611.
    D’Ilio, S., et al. (2006). "Simultaneous quantification of 17 trace elements in blood by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) equipped with a high-efficiency sample introduction system." Analytica Chimica Acta 579: 202-208.
    Dreisewerd, K., et al. (2007). "Molecular Analysis of Native Tissue and Whole Oils by Infrared Laser Mass Spectrometry." Analytical Chemistry 79: 4514-4520.
    Durrant, S. F. and N. I. Ward (2005). "Recent biological and environmental applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)." Journal of Analytical Atomic Spectrometry 20: 821-829.
    Ferguson, J. W. and R. S. Houk (2006). "High resolution studies of the origins of polyatomic ions in inductively coupled plasma-mass spectrometry, Part I. Identification methods and effects of neutral gas density assumptions, extraction voltage, and cone material." Spectrochimica Acta Part B 61: 905-915.
    Forsgard, N., et al. (2007). "Screening and identification of aluminium-containing biomolecules by column-switched LC-ICP-MS and LC-ESI-MS/MS." Journal of Analytical Atomic Spectrometry 22: 1397-1402.
    Garbarino, J. R. and H. E. Taylor (1987). "Stable isotope dilution analysis of hydrologic samples by inductively coupled plasma mass spectrometry." Analytical Chemistry 59: 1568-1575.
    Gondal, M. A. and T. Hussain (2007). "Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy." Talanta 71: 73-80.
    Gonzalez, J. J., et al. (2007). "Metal particles produced by laser ablation for ICP–MS measurements." Talanta 73: 567-576.
    Gregoire, D. C. and R. E. Sturgeon (1999). "Analyte transport efficiency with electrothermal vaporization inductively coupled plasma mass spectrometry." Spectrochimica Acta Part B 54: 773-786.
    Guillong, M. and C. A. Heinrich (2007). "Sensitivity enhancement in laser ablation ICP-MS using small amounts of hydrogen in the carrier gas." Journal of Analytical Atomic Spectrometry 22: 1488-1494.
    Halicz, L. and D. G. nther (2004). "Quantitative analysis of silicates using LA-ICP-MS with liquid calibration." Journal of Analytical Atomic Spectrometry 19: 1539-1545.
    Hergenröder, R. (2006). "Laser-generated aerosols in laser ablation for inductively coupled plasma spectrometry." Spectrochimica Acta Part B 61: 284-300.
    Hirata, S., et al. (2001). "Determination of Rare Earth Elements in Seawater by On-line Column Preconcentration Inductively Coupled Plasma Mass Spectrometry." Analytical Sciences 2001, VOL.17 17 SUPPLEMENT.
    Hoffmann, E., et al. (2000). "Investigation of mercury migration in human teeth using spatially resolved analysis by laser ablation-ICP-MS." Journal of Analytical Atomic Spectrometry 15: 663-667.
    Hu, S., et al. (2007). "Detection of Multiple Proteins on One Spot by Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Application to Immuno- Microarray with Element-Tagged Antibodies." Analytical Chemistry 79: 923-929.
    Hughes, D. M., et al. (1995). "Seawater as a multi-compoent physical carrier for ETV-ICP-MS." Spectrochim. Acta B 50: 425-440.
    Hutton, R. C. and A. N. Eaton (1988). "Analysis of solutions containing high levels of dissolved solids by inductively coupled plasma mass spectrometry." Journal of Analytical Atomic Spectrometry 3: 547-550.
    Inagaki, K., et al. (2007). "Determination of cadmium in grains by isotope dilution ICP–MS and coprecipitation using sample constituents as carrier precipitants." Analytical and Bioanalytical Chemistry 389: 691-696.
    Kantor, T. (1988). "Interpreting some analytical characteristics of thermal dispersion methods used for sample introduction in atomic spectrometry." Spectrochim. Acta, Part B 43: 1299-1320.
    Khatib-Shahidi, S., et al. (2006). "Direct Molecular Analysis of Whole-Body Animal Tissue Sections by Imaging MALDI Mass Spectrometry." Analytical Chemistry 78: 6448-6456.
    Lee Y. L., et al. (2003). "Laser ablation inductively coupled plasma mass spectrometry for the determination of trace elements in soil" Spectrochimica Acta Part B 58: 523–530.
    Lemos, V. A., et al. (2006). "Preconcentration Systems Using Polyurethane Foam/Me-BDBD for Determination of Copper in Food Samples." Microchimica Acta 153: 193-201.
    Lin S. H. and Jiang C. D. (2003) "Fenton oxidation and sequencing batch reactor (SBR) treatments of high-strength semiconductor wastewater" Desalination 154: 107-116
    Liu, H., et al. (2000). "Pb/U Fractionation during Nd:YAG 213 nm and 266 nm Laser Ablation Sampling with Inductively Coupled Plasma Mass Spectrometry." Applied Spectroscopy 54: 1435-1442.
    Morrison, G., et al. (2004). "determination of heavy metal concentrations and metal fingerprints of sewage sludge from eastern cape provience, south africa by inductively coupled plasma-mass spectrometry (ICP-MS) and laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS)." Water, Air, and Soil Pollution 152: 111-127.
    Pointurier, F., et al. (2008). "Assessment of plutonium measurement in the femtogram range by ICP-MS; correction from interfering polyatomic species." Journal of Analytical Atomic Spectrometry 23: 94-102.
    Russo, R. E., et al. (2002). "Laser ablation in analytical chemistry—a review." Talanta 57: 425-451.
    Tan, S. H. and G. Horlick (1987). "Matrix-effect observations in inductively coupled plasma mass spectrometry." Journal of Analytical Atomic Spectrometry 2: 745-763.
    Taylor, V. F., et al. (2003). "Multielement Analysis of Canadian Wines by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Multivariate Statistics." Journal of Agricultural and Food Chemistry 51: 856-860.
    Vaeck, L. V., et al. (1997). "Laser microprobe mass spectrometry: principle and applications in biology and medicine." Cell Biology International 21: 634-648.
    Vanderpool, R. A. and W. T. Buckley (1999). "Liquid-Liquid Extraction of Cadmium by Sodium Diethyldithiocarbamate from Biological Matrixes for Isotope Dilution Inductively Coupled Plasma Mass Spectrometry." Analytical Chemistry 71: 652-659.
    Wang, C.-F. and C.-J. Chin (1999). "Determination of chromium in airborne particulate matter by high resolution and laser ablation inductively coupled plasma mass spectrometry." Analytica Chimica Acta 389: 257-266.
    Wang, C.-F., et al. (1998). "Preparation of airborne particulate standards on PTFE-membrane filter for laser ablation inductively coupled plasma mass spectrometry." Analytica Chimica Acta 368: 11-19.
    Wang, J., et al. (1990). "Effect of ion-lens tuning and flow injection on non-spectroscopic matrix interferences in inductively coupled plasma mass spectrometry." Journal of Analytical Atomic Spectrometry 5: 445-449.
    Yang, L., et al. (2005). "Quantitation of Trace Metals in Liquid Samples by Dried-Droplet Laser Ablation Inductively Coupled Plasma Mass Spectrometry." Analytical Chemistry 77: 2971-2977.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE