研究生: |
朱俊豪 Chu, Chun-Hao |
---|---|
論文名稱: |
二硒化鎢金屬化末端接觸場效電晶體與電子元件應用 Metallized end contact for WSe2 MOSFET transistor and electronic devices application |
指導教授: |
邱博文
Chiu, Po-Wen |
口試委員: |
闕郁倫
Chueh, Yu-Lun 林彥甫 Lin, Yen-Fu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 過渡金屬硫族化物 、場效電晶體 、末端接觸 、上接觸 |
外文關鍵詞: | TMD, field-effect transistor, end contact, top contact |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於使用僅僅只有原子層厚度的過渡金屬硫族化物(Transition-metal dichalcogenides, TMDs)作為通道材料場效電晶體(Field-effect transistors, FETs),金屬與半導體接觸工程一直是一個很重要的議題。傳統的金屬與TMDs接觸是利用微影製程的方式形成一個上端鍵結接觸(Top-bonded contact)的結構,會夾帶一個很大的蕭特基能障。為了要提供一個對載子注入更有效的方式,在論文中提出了末端鍵結接觸(End-bonded contact)的結構,能夠使通道材料的邊緣與接觸金屬有更強的共價鍵,利用預先鍍好的WO3-x/Pd/WO3-x晶種層(Seeding layer)與化學氣相沉積(Chemical vapor deposition, CVD)的方式來形成金屬-WSe2-金屬的末端接觸結構。如此一來單層的WSe2場效電晶體表現出卓越的特性,電流密度達到30 μA/μm、電動遷移率為90 cm2/V·s、次臨限擺幅為94 mV/dec,勝過同一通道材料的上接觸結構。另一方面也使用了密度泛函理論(Density function theory, DFT)對兩者結構進行模擬計算,結果指出末端接觸的Pd-W有更強的軌域混成以及富裕的禁帶能態,對於元件形成更佳的電性表現。
Contact engineering has been the central issue in the context of high-performance field-effect transistors (FETs) made of atomic thin transition metal dichalcogenides (TMDs). Conventional metal contacts on TMDs have been made on top via a lithography process, forming a top-bonded contact scheme with an appreciable contact barrier. To provide a more efficient pathway for charge injection, an end-bonded contact scheme has been proposed, in which covalent bonds are formed between the contact metal and channel edges. Yet, little efforts have been made to realize this contact configuration. Here, we bridge this gap and demonstrate end-contact WSe2 by means of chemical vapor deposition, in which the channel is grown from the two opposing WO3-x/Pd/WO3-x nucleation seeds, forming metal-WSe2-metal end contacts. Monolayer WSe2 FETs thus made exhibit remarkable performance metrics, including the on-current density of 30 μA/μm, hole mobility of 90 cm2/V·s, and subthreshold swing of 94 mV/dec, surpassing those of FETs sharing with the same channel but contacted on top. Calculations using density functional theory indicates that the superior device performance stems mainly from the stronger Pd-W hybridization and substantial gap states in the end contact configuration.
[1] https://mic.iii.org.tw/IndustryObservations-PressRelease02.aspxsqno=491.
[2] http:// www.indusoft.com/ blog/ 2016/01/29/ history-of-automation-thetriode-
vacuum-tube-the-evolution-into-automation-industrial-and-machinecontrol/.
[3] https://www.computerhope.com/issues/ch000984.htm.
[4] http://www.cedmagic.com/history/transistor-1947.html.
[5] https://en.wikipedia.org/wiki/Integrated-circuit.
[6] https:// www.bit-tech.net/ others/ tech/ intel-claims-moore-s-law-isn-t-deadbut-ali/1/.
[7] https://www.cnet.com/news/moores-law-to-roll-on-for-another-decade/.
[8] http:// semiconductordevice.net/ SemiconductorEquipment/ semiconductorroadmap.
[9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.
Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically
thin carbon films,” Science, vol. 306, p. 666, Oct. 2004.
[10] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier,A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on twodimensional
materials,” Nature Nanotechnology, vol. 9, p. 768, Oct. 2014.
[11] F. Zhang and J. Appenzeller, “Tunability of short-channel effects in MoS2 field-effect devices,” Nano Lett., vol. 15, pp. 301–306, Jan. 2015.
[12] K. Xu, D. Chen, F. Yang, Z. Wang, L. Yin, F. Wang, R. Cheng, K. Liu, J. Xiong, Q. Liu, and J. He, “Sub-10 nm nanopattern architecture for 2D material field-effect transistors,” Nano Lett., vol. 17, pp. 1065–1070, Feb. 2017.
[13] A. D. Franklin, M. Luisier, S.-J. Han, G. Tulevski, C. M. Breslin, L. Gignac, M. S. Lundstrom, and W. Haensch, “Sub-10 nm carbon nanotube transistor,”Nano Lett., vol. 12, pp. 758–762, Feb. 2012.
[14] A. D. Franklin and Z. Chen, “Length scaling of carbon nanotube transistors,” Nature Nanotechnology, vol. 5, p. 858, Nov. 2010.
[15] V. Vitale, A. Curioni, and W. Andreoni, “Metal−carbon nanotube contacts:The link between schottky barrier and chemical bonding,” J. Am. Chem. Soc.,vol. 130, pp. 5848–5849, May 2008.
[16] Q. Cao, S.-J. Han, J. Tersoff, A. D. Franklin, Y. Zhu, Z. Zhang, G. S. Tulevski,J. Tang, and W. Haensch, “End-bonded contacts for carbon nanotube transistors with low, size-independent resistance,” Science, vol. 350, p. 68, Oct.2015.
[17] J. Tang, Q. Cao, D. B. Farmer, G. Tulevski, and S. J. Han, “High-performance carbon nanotube complementary logic with end-bonded contacts,” IEEE Transactions on Electron Devices, vol. 64, no. 6, pp. 2744–2750, June.
[18] H. Liu, M. Si, Y. Deng, A. T. Neal, Y. Du, S. Najmaei, P. M. Ajayan, J. Lou, and P. D. Ye, “Switching mechanism in single-layer molybdenum disulfide transistors: An insight into current flow across schottky barriers,” ACS Nano,vol. 8, pp. 1031–1038, Jan. 2014.
[19] C. D. English, G. Shine, V. E. Dorgan, K. C. Saraswat, and E. Pop, “Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition,” Nano Lett., vol. 16, pp. 3824–3830, June 2016.
[20] Y. Xu, C. Cheng, S. Du, J. Yang, B. Yu, J. Luo, W. Yin, E. Li, S. Dong, P. Ye, and X. Duan, “Contacts between two- and three-dimensional materials: Ohmic, schottky, and p-n heterojunctions,” ACS Nano, vol. 10, pp. 4895–4919, May 2016.
[21] L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a twodimensional material,” Science, vol. 342, p. 614, Nov. 2013.
[22] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang,“The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nature Chemistry, vol. 5, p. 263, Mar. 2013.
[23] R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, “Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,” Nature Materials, vol. 13, p. 1128, Aug. 2014.
[24] Y. Ma, B. Liu, A. Zhang, L. Chen, M. Fathi, C. Shen, A. N. Abbas, M. Ge, M. Mecklenburg, and C. Zhou, “Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices,” ACS Nano, vol. 9, pp. 7383–7391, July 2015.
[25] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature Nanotechnology, vol. 7, p. 699, Nov. 2012.
[26] H. Yuan, H. Wang, and Y. Cui, “Two-dimensional layered chalcogenides: From rational synthesis to property control via orbital occupation and electron filling,” Acc. Chem. Res., vol. 48, pp. 81–90, Jan. 2015.
[27] W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, “Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2HMX2 semiconductors (M = Mo, W; X = S, Se, Te),” PRB, vol. 85, p. 033305,Jan. 2012.
[28] M. Ahmad, E. Müller, C. Habenicht, R. Schuster, M. Knupfer, and B. Büchner,“Semiconductor-to-metal transition in the bulk of WSe2 upon potassium intercalation,” Journal of Physics: Condensed Matter, vol. 29, no. 16,p. 165502, 2017.
[29] A. Kuc, N. Zibouche, and T. Heine, “Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2,” PRB, vol. 83, p. 245213, June 2011.
[30] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc Natl Acad Sci U S A, vol. 102, p. 10451, July 2005.
[31] P. B. G. James D. Plummer, Michael D. Deal, Silicon VLSI Technology. 2000.
[32] J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano, vol. 8,pp. 923–930, Jan. 2014.
[33] Y. Feng, K. Zhang, F. Wang, Z. Liu, M. Fang, R. Cao, Y. Miao, Z. Yang, W. Mi, Y. Han, Z. Song, and H. S. P. Wong, “Synthesis of large-area highly crystalline monolayer molybdenum disulfide with tunable grain size in a H2 atmosphere,” ACS Appl. Mater. Interfaces, vol. 7, pp. 22587–22593, Oct. 2015.
[34] Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.-T. Liang, C.-W. Chu, and L.-J. Li, “Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization,” Nanoscale, vol. 4, no. 20, pp. 6637–6641, 2012.
[35] Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater., vol. 24, pp. 2320–2325, Aug. 2012.
[36] L. Yu, D. El-Damak, U. Radhakrishna, X. Ling, A. Zubair, Y. Lin, Y. Zhang, M.-H. Chuang, Y.-H. Lee, D. Antoniadis, J. Kong, A. Chandrakasan, and T. Palacios, “Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with e-mode FETs for large-area electronics,” Nano Lett., vol. 16, pp. 6349–6356, Oct. 2016.
[37] K. K. H. Smithe, C. D. English, S. V. Suryavanshi, and E. Pop, “Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices,” 2D Materials, vol. 4, no. 1, p. 011009, 2017.
[38] K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates,” Nano Lett., vol. 12, pp. 1538–1544, Mar. 2012.
[39] X. Luo, Y. Zhao, J. Zhang, M. Toh, C. Kloc, Q. Xiong, and S. Y. Quek, “Effects of lower symmetry and dimensionality on raman spectra in twodimensional WSe2,” PRB, vol. 88, p. 195313, Nov. 2013.
[40] W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2,” Nanoscale, vol. 5, no. 20, pp. 9677–9683, 2013.
[41] C. A. Mead and W. G. Spitzer, “Fermi level position at metal-semiconductor interfaces,” PR, vol. 134, pp. A713–A716, May 1964.
[42] J. Tersoff, “Schottky barrier heights and the continuum of gap states,” PRL, vol. 52, pp. 465–468, Feb. 1984.
[43] H. Hasegawa and T. Sawada, “On the electrical properties of compound semiconductor interfaces in metal/insulator/ semiconductor structures and the possible origin of interface states,” Thin Solid Films, vol. 103, pp. 119–140, Jan. 1983.
[44] 施敏、伍國, 半導體元件物理學. 國立交通大學出版社, 2008.
[45] J. M. Larson and J. P. Snyder, “Overview and status of metal S/D schottkybarrier MOSFET technology,” IEEE Transactions on Electron Devices, vol. 53, no. 5, pp. 1048–1058, May.
[46] R. Islam, G. Shine, and K. C. Saraswat, “Schottky barrier height reduction for holes by fermi level depinning using metal/nickel oxide/silicon contacts,” Appl. Phys. Lett., vol. 105, p. 182103, Aug. 2014.
[47] A. Agrawal, J. Lin, M. Barth, R. White, B. Zheng, S. Chopra, S. Gupta, K. Wang, J. Gelatos, S. E. Mohney, and S. Datta, “Fermi level depinning and contact resistivity reduction using a reduced titania interlayer in n-silicon metal-insulator-semiconductor ohmic contacts,” Appl. Phys. Lett., vol. 104, p. 112101, Aug. 2018.
[48] C. Kim, I. Moon, D. Lee, M. S. Choi, F. Ahmed, S. Nam, Y. Cho, H.-J. Shin, S. Park, and W. J. Yoo, “Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides,” ACS Nano, vol. 11, pp. 1588– 1596, Feb. 2017.
[49] C. Gong, L. Colombo, R. M. Wallace, and K. Cho, “The unusual mechanism of partial fermi level pinning at metal-MoS2 interfaces,” Nano Lett., vol. 14, pp. 1714–1720, Apr. 2014.
[50] Y. Wang, R. X. Yang, R. Quhe, H. Zhong, L. Cong, M. Ye, Z. Ni, Z. Song, J. Yang, J. Shi, J. Li, and J. Lu, “Does p-type ohmic contact exist in WSe2-metal interfaces?,” Nanoscale, vol. 8, no. 2, pp. 1179–1191, 2016.
[51] P. Bampoulis, R. van Bremen, Q. Yao, B. Poelsema, H. J. W. Zandvliet, and K. Sotthewes, “Defect dominated charge transport and fermi level pinning in MoS2/metal contacts,” ACS Appl. Mater. Interfaces, vol. 9, pp. 19278–19286, June 2017.
[52] W. M. Parkin, A. Balan, L. Liang, P. M. Das, M. Lamparski, C. H. Naylor, J. A. Rodríguez-Manzo, A. T. C. Johnson, V. Meunier, and M. Drndić, “Raman shifts in electron-irradiated monolayer MoS2,” ACS Nano, vol. 10, pp. 4134–
4142, Apr. 2016.
[53] Y. Liu, J. Guo, E. Zhu, L. Liao, S.-J. Lee, M. Ding, I. Shakir, V. Gambin, Y. Huang, and X. Duan, “Approaching the schottky-mott limit in van der waals metal-semiconductor junctions,” Nature, vol. 557, pp. 696–700, May 2018.
[54] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, “Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors,” PRX, vol. 4, p. 031005, July 2014.
[55] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “Highperformance single layered WSe2 p-FETs with chemically doped contacts,” Nano Lett., vol. 12, pp. 3788–3792, July 2012.
[56] L. Yu, A. Zubair, E. J. G. Santos, X. Zhang, Y. Lin, Y. Zhang, and T. Palacios, “High-performance WSe2 complementary metal oxide semiconductor technology and integrated circuits,” Nano Lett., vol. 15, pp. 4928–4934, Aug. 2015.
[57] Y. Liu, H. Wu, H.-C. Cheng, S. Yang, E. Zhu, Q. He, M. Ding, D. Li, J. Guo, N. O. Weiss, Y. Huang, and X. Duan, “Toward barrier free contact to molybdenum disulfide using graphene electrodes,” Nano Lett., vol. 15, pp. 3030–3034, May 2015.
[58] H.-J. Chuang, B. Chamlagain, M. Koehler, M. M. Perera, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors,” Nano Lett., vol. 16, pp. 1896–1902, Mar. 2016.
[59] T. Chu and Z. Chen, “Understanding the electrical impact of edge contacts in few-layer graphene,” ACS Nano, vol. 8, pp. 3584–3589, Apr. 2014.
[60] B. H. Moon, G. H. Han, H. Kim, H. Choi, J. J. Bae, J. Kim, Y. Jin, H. Y. Jeong, M.-K. Joo, Y. H. Lee, and S. C. Lim, “Junction-structure-dependent schottky barrier inhomogeneity and device ideality of monolayer MoS2 fieldeffect transistors,” ACS Appl. Mater. Interfaces, vol. 9, pp. 11240–11246, Mar. 2017.
[61] H.-L. Tang, M.-H. Chiu, C.-C. Tseng, S.-H. Yang, K.-J. Hou, S.-Y. Wei, J.- K. Huang, Y.-F. Lin, C.-H. Lien, and L.-J. Li, “Multilayer graphene-WSe2 heterostructures for WSe2 transistors,” ACS Nano, vol. 11, pp. 12817–12823, Dec. 2017.
[62] M. H. D. Guimarães, H. Gao, Y. Han, K. Kang, S. Xie, C.-J. Kim, D. A. Muller, D. C. Ralph, and J. Park, “Atomically thin ohmic edge contacts between two-dimensional materials,” ACS Nano, vol. 10, pp. 6392–6399, June 2016.
[63] H. Okamoto, “The Pd-Se (palladium-selenium) system,” Journal of Phase Equilibria, vol. 13, pp. 69–72, Feb. 1992.
[64] T. Fujimoto and K. Awaga, “Electric-double-layer field-effect transistors with ionic liquids,” Phys. Chem. Chem. Phys., vol. 15, no. 23, pp. 8983–9006, 2013.
[65] P. Zhao, D. Kiriya, A. Azcatl, C. Zhang, M. Tosun, Y.-S. Liu, M. Hettick, J. S. Kang, S. McDonnell, K. C. Santosh, J. Guo, K. Cho, R. M. Wallace, and A. Javey, “Air stable p-doping of WSe2 by covalent functionalization,” ACS Nano, vol. 8, pp. 10808–10814, Oct. 2014.
[66] M. Tosun, S. Chuang, H. Fang, A. B. Sachid, M. Hettick, Y. Lin, Y. Zeng, and A. Javey, “High-gain inverters based on WSe2 complementary field-effect transistors,” ACS Nano, vol. 8, pp. 4948–4953, May 2014.
[67] A. Dathbun, Y. Kim, S. Kim, Y. Yoo, M. S. Kang, C. Lee, and J. H. Cho, “Large-area CVD-grown sub-2 v ReS2 transistors and logic gates,” Nano Lett., vol. 17, pp. 2999–3005, May 2017.
[68] P. J. Jeon, J. S. Kim, J. Y. Lim, Y. Cho, A. Pezeshki, H. S. Lee, S. Yu, S.-W. Min, and S. Im, “Low power consumption complementary inverters with n-MoS2 and p-WSe2 dichalcogenide nanosheets on glass for logic and light-emitting diode circuits,” ACS Appl. Mater. Interfaces, vol. 7, pp. 22333– 22340, Oct. 2015.