研究生: |
吳文偉 Wen-Wei Wu |
---|---|
論文名稱: |
矽鍺合金上低電阻率金屬矽化物生成改善暨自組裝矽化物量子點之研究 Enhanced Growth of Low-Resistivity Metal Silicides and Self-Assembled Silicides Quantum Dot Arrays on Epitaxial Si-Ge Alloys on Silicon |
指導教授: |
陳力俊
Lih-Juann Chen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 英文 |
論文頁數: | 169 |
中文關鍵詞: | 矽鍺合金 、金屬矽化物 、鍺偏析 、自組裝量子點 |
外文關鍵詞: | silicon germanium alloy, metal silicide, Ge segregation, self-assemble quantum dots |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係利用四點探針,低角度X-光繞射儀 (GIXRD),高分辨電子顯微鏡 (HRTEM) ,歐傑電子能譜儀 (AES) ,二次離子質譜儀 (SIMS) 及能量分析光譜 (EDX) 等儀器研究分析金屬薄膜與矽鍺合金之界面反應,特別是製程上較受重視的二矽化鈷 (CoSi2) ,二矽化鈦 (TiSi2) 以及矽化鎳 (NiSi) 低電阻率、自行對準金屬矽化物。另外,本研究亦利用矽鍺合金表面作為模板 (Template) ,成長規則性的低電阻金屬矽化物奈米點。
在成長低電阻率鈷金屬矽化物方面,利用鎳金屬在鈷與矽之間作夾層,可促使低電阻率的二矽化鈷及矽化鎳在400-500 ºC生成,從歐傑電子能譜儀 (AES) 可看出鎳原子由鈷/矽界面擴散至二矽化鈷層。在700 ºC以上則完全生成低電阻率的 (Co,Ni)Si2。研究發現鎳金屬夾層可有效降低二矽化鈷的生成溫度達100 ºC,並可防止在熱處理過程中氧化問題,以及改善與矽之間的界面平整度。除此之外,(Co,Ni)Si2 亦有相當好的熱穩定性,並且可和矽基材生成具優選方向的磊晶關係 (Epitaxy)。
在金屬與矽鍺合金之界面反應研究上,由於過程中金屬偏好和矽反應,導致鍺偏析 (Ge Segregation) 的形成,造成低電阻率金屬矽化物延遲生成、界面粗糙以及熱穩定性不佳等結果,嚴重影響在矽鍺製程上的應用。
利用金與二矽化鈷可互溶之現象,以及鈦金屬披覆有利於二矽化鈷熱穩定性之行為,本研究以Ti(5nm)/Co(30nm)/Au(1nm)/Si0.7Ge0.3系統作為促進二矽化鈷在矽鍺合金上生成之結構。研究發現,在此結構下退火,二矽化鈷的生成溫度較Co(30nm)/Si0.7Ge0.3系統降低了300 ºC之多,此外,在鈦金屬的披覆下,即使到了950 ºC仍能保持好的穩定性。在二次離子質譜儀分析亦可看出金原子主要都擴散至二矽化鈷層。
另一方面,在金屬與矽鍺合金之間夾一層適當厚度的非晶質矽當作反應消耗層亦可生成優質的低電阻率金屬矽化物。由本研究中可看出在此方法下,對於較受重視的二矽化鈷,二矽化鈦以及矽化鎳等金屬矽化物,都可達到防止鍺偏析、降低矽化物生成溫度、促使界面平整、以及改善在高溫時的穩定性的良好成效。
自組裝(Self-assembled)奈米點亦為當前重要研究課題之一。矽鍺合金在成長過程中由於受到矽基材表面切割偏離(Miscut)的影響,以及應力的產生,造成表面形成一維波浪狀的層級會聚(Step Bunching)結構。本研究利用此一現象,以矽鍺合金表面作為模板,於其上成長奈米尺度的低電阻率金屬矽化物。所生成的矽化鎳奈米點不僅尺度小且均一、還具有一維的規則性排列,少數區域甚至有二維排列的分佈。另一方面還可藉由Miscut角度來選擇奈米點排列的週期及大小。用相同方法亦可成長一維排列、規則性佳的低電阻率二矽化鈷奈米點。在自組裝奈米點或線方面,矽鍺合金亦扮演了重要角色,無論是直交紋路(Cross-hatch),層級會聚都可作為模板進而達到自組裝的效果。
Enhanced growth of low-resistivity metal silicides and self-assembled NiSi and CoSi2 quantum dot arrays on epitaxial Si-Ge alloys have been studied by sheet resistance measurement, glancing incidence X-ray diffractometry (GIXRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS), and energy dispersion analysis of X-ray (EDAX).
The formation of Co silicides on (001) Si with an interposing Ni layer has been investigated. For Co(20 nm)/Ni(7 nm)/Si(001) samples, CoSi2 and NiSi phase were observed to form at 400-500 ºC. AES analysis indicated that Ni diffused from the Co/Si interface to disperse in CoSi2 layer during annealing. Above 700 ºC, (Co,Ni)Si2 was the only silicide phase present. The presence of Ni was found to decrease the formation temperature of CoSi2 by about 100 ºC, prevent oxygen contamination from the annealing ambient, and improve uniformity of CoSi2 compared to that without Ni interlayer. In addition, the resulting (Co,Ni)Si2 layer has good thermal stability up to 1000 ºC and has a preferential epitaxial orientation with respect to the Si substrate.
Formation of Co silicides on Si0.7Ge0.3 alloys with a thin interposing Au layer and capping Ti layer has been investigated. CoSi2 was observed to be the only silicide phase in Si0.7Ge0.3 samples annealed at 650-950 ℃ with a thin interposing Au layer and capping Ti layer. The sequence of phase formation is the same as the reaction of Co with (001)Si. The presence of Au was found to decrease the formation temperature of CoSi2 by about 300 ℃ compared to that of Co(30nm)/Si0.7Ge0.3 samples. In addition, a thin capping Ti layer improves the uniformity and thermal stability of CoSi2 layer. For Ti(5nm)/Co(30nm)/Au(1nm)/Si0.7Ge0.3 system, the process window of CoSi2 was extended to 650-950 ℃. SIMS analysis indicated that a large amount of Au diffused from the Co/Si0.7Ge0.3 interface to disperse in the CoSi2 layer during annealing.
Enhanced growth of low-resistivity self-aligned CoSi2, C54-TiSi2, and NiSi on epitaxial Si0.7Ge0.3 has been achieved with an interposing amorphous Si (a-Si) layer. The a-Si layer was used as a sacrificial layer with appropriate thickness to prevent Ge segregation, decrease the growth temperature, as well as maintain the interface flatness and morphological stability in forming CoSi2, C54-TiSi2, and NiSi on Si0.7Ge0.3 grown by molecular beam eptiaxy. The process promises to be applicable to the fabrication of high-speed Si-Ge devices.
Self-assembled NiSi and CoSi2 quantum dot arrays have been grown on relaxed epitaxial Si0.7Ge0.3 on (001)Si. The formation of the one-dimensional ordered structure is attributed to the nucleation of NiSi nanodots on the surface undulations induced by step bunching on the surface of SiGe film owing to the miscut of the wafers from normal to the (001)Si direction. The two-dimensional, pseudo-hexagonal structure was achieved under the influence of repulsive stress between nanodots. Since the periodicity of surface bunching can be tuned with appropriate vicinality and misfit, the undulated templates promise to facilitate the growth of ordered silicide quantum dots with selected periodicity and size for utilization in nanodevices.
Chapter 1
1.1. E. Kasper, and H. J. Herzog, “A One-Dimensional SiGe Superlattice Grown by UHV Epitaxy,” Appl. Phys. 8, 199-205 (1975).
1.2. J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and J. K. Robinson, “GexSi1-x/Si Strained-Layer Superlattice Grown by Molecular-Beam Epitaxy,” J. Vac. Sci. Technol. A2, 436-440 (1984).
1.3. J. C. Bean, T. T. Sheng, L. C. Feldman, A. T. Fiory, and R. T. Lynch, “Pseudomorphic Growth of GexSi1-x on Silicon by Molecular-Beam Epitaxy,” Appl. Phys. Lett. 44, 102-104 (1984).
1.4. G. Abstreiter, H. Brugger, T. Wolf, H. Jorke, and H. J. Herzog, “Strain-Induced Two-Dimensional Electron-Gas in Selectively Doped Si/SixGe1-x Superlattices,” Phys. Rev. Lett. 54, 2441-2444 (1985).
1.5. T. P. Pearsall, and J. C. Bean, “Enhancement-Mode and Depletion-Mode Para-Channel GexSi1-x Modulation-Doped FETs” IEEE Electron. Dev. Lett. EDL-7, 308-310 (1986).
1.6. S. Luryi, T. P. Pearsall, H. Temkin, and J. C. Bean, “Wave-Guide Infrared Photodetectors on A Silicion Chip,” Electron. Dev. Lett. EDL-7, 104-107 (1986).
1.7. C. Lee, and K. L. Wang, “Intersubband Absorption in δ-doped Si/Si1–xGex Quantum Well Structures Grown on Si (110),”Appl. Phys. Lett. 60, 2264-2266 (1992).
1.8. C. G. Van de Walle, and R. M. Martin, “Theoretical Calculations of Heterojunction Discontinuities in the Si/Ge System,” Phys. Rev. B 34, 5621-5634 (1986).
1.9. S. Fukatsu, H. Akiyama, Y. Shraki, and H. Sakaki, “Quantitative Analysis of Light Emission from SiGe Quantum Wells,” J. Crystal Growth 157, 1-10 (1995).
1.10. D. C. Houghton, “Strain Relaxation Kinetics in Si1–xGex/Si Heterostructures,” J. Appl. Phys. 70, 2136-2151 (1991).
1.11. R. Hull, J. C. Bean, D. J. Werder, and R. E. Leibenguth, “In Situ Observations of Misfit Dislocation Propagation in GexSi1–x/Si(100) Heterostructures,” Appl. Phys. Lett. 52, 1605-1607 (1988).
1.12. E. A. Fitzgerald, Y. H. Xie, D. Monroe, P. J. Silverman, J. M. Kuo, A. R. Kurtan, F. A. Thiel and B. E. Weir, “Relaxed GexSi1-x Structures for III-V Integration with Si and high Mobility 2-Dimensional Electron Gases in Si,” J. Vac. Sci. Technol. B10, 1807-1809 (1992).
1.13. A. C. Churchill, D. J. Robbins, D. J. Wallis, N. Griffin, D. J. Paul, and A. J. Pidduck, “High-Mobility Two-Dimensional Electron Gases in Si/SiGe Heterostructures on Relaxed SiGe Layers Grown at High Temperature,” Semicond. Sci. Technol. 12, 943-946 (1997).
1.14. G. Abstreiter, H. Brugger, T. Wolf, H. Jorke, and H. J. Herzog, “Strain-Induced Two-Dimensional Electron Gas in Selectively Doped Si/SixGe1-x Superlattices,” Phys. Rev. Lett. 54, 2441-2444 (1985).
1.15. Y. J. Mii, Y. H. Xie, E. A. Fitzgerald, F. B. E. Weir, and L. C. Feldman, “Extremely High Electron Mobility in Si/GexSi1–x Structures Grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 59, 1611-1613 (1991).
1.16. K. Ismail, M. Arafa, K. L. Saenger, J. O. Chu, and B. S. Meyerson, “Extremely High Electron Mobility in Si/SiGe Modulation-Doped Heterostructures,” Appl. Phys. Lett. 66, 1077-1079 (1995).
1.17. S. J. Jeng, B. Jagannathan, J.-S. Rieh, J. Johnson, K. T. Schonenberg, D. Greenberg, A. Stricker, H. Chen, M. Khater, D. Ahlgren, G. Freeman, K. Stein, Member, and S. Subbanna, “A 210-GHz f(T) SiGe HBT with a Non-Self-Aligned Structure,” IEEE Electron Dev. Lett. 22, 542-544 (2001)
1.18. T. Mizuno, S. Takagi, N. Sugiyama, H. Satake, A. Kurobe, and A. Toriumi, “Electron and Hole Mobility Enhancement in Strained-Si MOSFET's on SiGe-on-Insulator Substrates Fabricated by SIMOX Technology,” IEEE Electron Dev. Lett. 21, 230-232 (2000).
1.19. U. Konig, and F. Schaffler, “P-Type Ge-Channel MODFETS with High Transconductance Grown on Si Substrstes,” IEEE Electron Dev. Lett. 14, 205-207 (1993).
1.20. T. Irisawa, S. Tokumitsu, T. Hattori, K. Nakagawa, S. Koh, and Y. Shitake, “Ultrahigh Room-Temperature Hole Hall and Effective Mobility in Si0.3Ge0.7/Ge/Si0.3Ge0.7 Heterostructures,” Appl. Phys. Lett. 81, 847-849 (2002).
1.21. Y. Suda and H. Koyama, “Electron Resonant Tunneling with a High Peak-to-Valley Ratio at Room Temperature in Si1-xGex/Si Triple Barrier Diodes” Appl. Phys Lett. 79, 2273-2275 (2001).
1.22. Z. Matutinoviac-Krstelj, C. W. Liu, X. Xiao, and J. C. Sturm, “Evidence of Phonon-Absorption-Assisted Electron Resonant-Tunneling in Si/Si1-xGex Diodes,” J. Vac. Sci. Technol. B11, 1145-1148 (1993).
1.23. H. C. Liu, D. Landheer, N. Buchanan, and D. C. Houghton, “Resonata Tunneling in Si/Si1-xGex Double-Barrier Structures,” Appl. Phys. Lett. 52, 1809-1811 (1988).
1.24. K. Ismail, B. S. Meyerson, S. Rishton, J. Chu, S. Nelson, and J. Noccra, “High-Transconductance n-type Si/SiGe Modulation-Doped Field-Effect Transistors,” IEEE Electron Dev. Lett. 13, 229-231 (1992).
1.25. J. Welser, J. L. Hoyt, and J. F. Gibbons, “Electron-Mobility Enhancement In Strained-Si n-type Metal-Oxide-Semiconductor Field-Effect Transistors,” IEEE Electron Dev. Lett. 15, 100-102 (1994).
1.26. C. Houghton, C. J. Gibbings, C. G. Tuppen, M. H. Lyons, and A. G. Halliwell, “Equilibrium Critical Thickness for Si1-xGex Strained Layers on (100) Si,” Appl. Phys. Lett. 56, 460-462 (1990).
1.27. C. W. Liu, J. C. Sturm, P. V. Schwartz and E. A. Fitzgerald, “Misfit Dislocation Nucleaction Sites and Metastability Enhancement of Selective Si1-xGex Grown by Rapid Thermal Chemical Vapor Deposition,” Proc. Mater. Res. Soc. Symp. vol. 238, 85-90 (1992).
1.28. K. Ismail, M. Arafa, K. L. Saenger, J. O. Chu and B. S. Meyerson, “Extremely High Electron Mobility in Si/SiGe Modulation-Doped Heterostructures,” Appl. Phys. Lett. 66, 1077-1079 (1995).
1.29. K. Ismail, M. Arafa, F. Stern, J. O. Chu and B. S. Meyerson, “Gated Hall effect measurements in high-mobility n-type Si/SiGe modulation-doped heterostructures,” Appl. Phys. Lett. 66, 842-844 (1995).
1.30. F. Schaeffler, D. Tobben, H. J. Herzog, G. Abstreiter and B. Hollander, “High-Electron-Mobility Si/SiGe Heterostructures: Influence of the Relaxed SiGe Buffer Layer,” Semicond. Sci. Technol. 7, 260-266 (1992).
1.31. Y. J. Mii, Y. H. Xie, E. A. Fitzgerald, D. Monroe, F. A. Theil and B.E. Weir, “Extremely High Electron Mobility in Si/GexSi1-x Structures Grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 59, 1611-1613 (1991).
1.32. M. M. Rieger and P. Vogl, “Electronic-band parameters in strained Si1-xGex alloys on Si1-yGey substrates,” Phys. Rev. B, 48, 14276-14287 (1993).
1.33. K. Ismail, F. Nelson, J. O. Chu and B. S. Meyerson, “Electron Transport Properties of Si/SiGe Heterostructures: Measurements and Device Implications,” Appl. Phys. Lett. 63, 660-662 (1993).
1.34. A. Sadek and K. Ismail, “Si/SiGe CMOS Possibilities,” Solid State Electron. 38, 1731-1734 (1995).
1.35. D. V. Lang, R. People, J. C. Bean and A. M. Sergent, “Measurement of The Band Gap of GexSi1–x/Si Strained-Layer Heterostructures,” Appl. Phys. Lett. 47, 1333-1335 (1985).
1.36. K. Ismail, J. O. Chu and B. S. Meyerson, “High Hole Mobility in SiGe Alloys for Device Applications,” Appl. Phys. Lett. 64, 3124-3126 (1994).
1.37. K. Ismail, S. Rishton, J. O. Chu, K. Chan, S. F. Nelson and B. S. Meyerson, “High-Performance Si/SiGe N-Type Modulation-Doped Transistors,” IEEE Electron Device Lett. EDL-14, 348-350 (1993).
1.38. M. Arafa, P. Fay, K. Ismail, J. O. Chu and B. S. Meyerson and I. Adesida, “High Speed p-Type SiGe Modulation-Doped Field-Effect Transistors,” IEEE Electron Device Lett. 17, 124-126 (1996).
1.39. G. Abstreiter, H. Brugger, T. Wolf, H. Jorke and H. J. Herzog, “Strain-Induced Two-Dimensional Electron Gas in Selectively Doped Si/SixGe1-x Superlattices,” Phys. Rev. Lett. 54, 2441-2444 (1985).
1.40. B. S. Meyerson, F. J. Himpsel, and K. J. Uram, “Bistable Conditions for Low-Temperature Silicon Epitaxy,” Appl. Phys. Lett. 57, 1034–1036 (1990).
1.41. J. F. Gibbons, C. M. Gronet, and K. E. Williams, “Limited Reaction Processing: Silicon Epitaxy,” Appl. Phys. Lett. 47, 721-723 (1985).
1.42. P. M. Garone, V. Venkataraman, J. C. Sturm, “Hole Confinement MOS-Gated GexSi1-x/Si Heterostructures,” IEEE Electron. Dev. Lett. 12, 230-232 (1991).
1.43. K. Goto, J. Murota, T. Maeda, R. Schutz, K. Aizawa, R. Kircher, K. Yokoo, S. Ono, “Fabrication of a Si1-xGex Channel Metal-Oxide-Semiconductor Field-Effect-Transistor (MOSFET) Containing High Ge Fraction Layer by Low-Pressure Chemical Vapor-Deposition,” Jpn. J. Appl. Phys. 32, 438-441, Part I (1993).
1.44. H. Daembkes, H. Herzog, H. Jorke, H. Kibbel, E. Kasper, “The N-Channel SiGe/Si Modulation-Doped Field-Effect Transistor,” IEEE Trans. Electron. Dev. ED-33, 633-638 (1986).
1.45. J. Welser, J. L. Hoyt, J. F. Gibbons, “Electron Mobility Enhancement in Strained-Si N-Type Metal-Oxide-Semiconductor Field-Effect Transistors,” IEEE Electron. Dev. Lett. 15, 100-102 (1994).
1.46. G. Kissinger, T. Morgenstern, G. Morgenstern, H. Richter, “Stepwise Equilibrated Graded GeXSi1-X Buffer with Very Low Threading Dislocation Density on Si(001),” Appl. Phys. Lett. 66, 2083-2085 (1995).
Chapter 2
2.1. M. A. Nicolet, “Diffusion Barrier in Thin Film,” Thin Solid Films, 52, 415-443 (1978).
2.2. P. S. Ho, “General-Aspects of Barrier Layers for Very Large Scale Integrated Applications. 1. Concepts,” Thin Solid Films, 96, 301-316 (1982).
2.3. H. H. Hosak, “Electrical and Mechanical Features of the Platinum Silicide-Al Reaction,” J. Appl. Phys. 44, 3476-3485 (1973).
2.4. H. Grinolds, and G. Y. Robinson, “Study of Al/PdSi2 Contacts on Si,” J. Vac. Sci. Technol. 14, 75-78 (1977).
2.5. H. Grinolds, and G. Y. Robinson, “Al/Nickel Silicide Contacts on Si,” Thin Solid Films 53, 135-140 (1978).
2.6. G. J. VanGurp, J. L. C. Daams, A, Van Oostrom, L. S. M. Auguetus, and Y. Tammings, “Al-Silicide Reactions. I. Diffusion, Compound Formation, and Microstructure,” J. Appl. Phys. 50, 6915-6922 (1979).
2.7. C. Y. Ting, and M. Wittmer, “Investigation of Al/TiSi2/Si Contact System,” J. Appl. Phys. 54, 937-943 (1983).
2.8. J. Y. Chen, and L. B. Roth, “Refractory Metals and Metal Silicides for VLSI Devices,” Solid State Technol. 27, Oct. 145-149 (1984).
2.9. A. K. Sinha, “Interconnect Material Technology for VLSI,” VLSI Science and Technology, edited by C. J. Dell’Qca and W. M. Bullis, (The Electrochem. Soc. Pennington, NJ, 1982) P. 173.
2.10. A. N. Saxena, and D. Pramanik, “VLSI Multilevel Metallization,” Solid State Technol. 27, Dec. 93-100 (1984).
2.11. A. K. Sinha, “Refractory Metal Silicides for VLSI Applications,” J. Vac. Sci. Technol. 19, 778-785 (1981).
2.12. H. J. Geipel, N. Hsieh, M. H. Ishaq, C. W. Hoburger, and F. R. White, “Composite Silicide Gate Electrodes-Interconnections for VLSI Device Technoligies,” IEEE Trans. Electron Devices ED-27, 1417-1424 (1980).
2.13. T. P. Chow, A. J. Steckl, and R. T. Jerdonek, “Refractory MoSi2/Poly Si Bulk CMOS Circuits,” IEEE Electron Device Lett. EDL-3, 37-40 (1982).
2.14. M. Fukumoto, A. Shinohara, S. Okada, and K. Kugimiya, “A New MoSi2/Thin Poly-Si Gate Process : Technology without Dielectric Degradation of Gate Oxide,” IEEE Trans. Electron Devices ED-31, 1432-1439 (1984).
2.15. V. Q. Ho, and H. M. Naguib, “Characterization of Rapidly Annealing Mo-Polycide,” J. Vac. Sci. Technol. A3, 896-898 (1985).
2.16. R. Portius, D. Dietrich, A. Hassner, T. Raschke, E. Wieser, and W. Wolke, “Formation of Stable MoSi2/Poly-Si Films by Rapid Thermal; Annealing,” Phys. Stat. Sol. (a) 100, 199-206 (1987).
2.17. T. O. Sedgwick, F. M. d’Heurle, and S. A. Cohen, “Short Time Annealing of Coevaporated Tungsten Silicide Films,” J. Electrochem. Soc. 131, 2446-2451 (1984).
2.18. M. Y. Tsai, H. H. Chao, L. M. Ephrath, B. L. Crowder, A. Cramer, R. S. Bennett, C. J. Luccese, and M. R. Wordman, “One-Micron Polycide (WSi2 on Poly-Si) MOSFET Technology,” J. Electrochem. Soc. 128, 2207-2214 (1981).
2.19. C. W. Koburger, H. J. Geipel, M. Ishaq, and L. A. Nesbit, “Controlling Void Formation in WSi2 Polycides,” IEEE Electron Device Lett. EDL-5, 166-168 (1984).
2.20. T. Hara, S. Enomoto, and T. Jinbo, “Interfacial Reaction in Polycide MOS Gate Structure Employing CVD Tungsten Silicide,” Jpn. Appl. Phys. L-23, 455-457 (1984).
2.21. A. K. Sinha, W. S. Lindenberger, D. B. Fraser, S. P. Muraka, and W. N. Fuls, “MOS Compatibility of High-Conductivity TaSi2/N+ Poly-Si gates,” IEEE Trans. Electron Devices ED-27, 1425-1430 (1980).
2.22. D. L. Kwong, R. Kwor, and B. Y. Tsaur, “Composite TaSi2/N+ Poly-Si Formation by Rapid Thermal Annealing,” IEEE Electron Device Lett. EDL-5, 133-135 (1984).
2.23. S. P. Muraka, and D. B. Fraser, “Thin Film Interaction between Titanium and Polycrystalline Si,” J. Appl. Phys. 51, 342-349 (1980).
2.24. S. P. Muraka, D. B. Fraser, H. J. Levinstein, and A. K. Sinha, “Refractory Silicides of Titanium and Tantalum for Low-Resistivity Gates and Interconnections,” IEEE Trans. Electron Devices ED-27, 1409-1417 (1980).
2.25. K. L. Wang, T. C. Holloway, W. R. Hunter, R. F. Pinizzoto, Z. P. Sobczak, and A. F. Tasch, “Composite TiSi2/N+ Poly-Si Low Resistivity Gate Electrode and Interconnect for VLSI Device Technology,” IEEE Trans. Electron Devices ED-29, 547-553 (1982).
2.26. T. Yachi, “Formation of a TiSi2/N+ Poly-Si Layer by Rapid Lamp Heating and Its Application to MOS Devices,” IEEE Electron Device Lett. EDL-5, 217-220 (1984).
2.27. Y. Narita, S. Ohya, Y. Murao, S. K. Anauchi, and M. Kikuchi, “A High-Speed 1-Mbit EPROM with a Ti-Silicide Gate,” IEEE Trans. Electron Devices ED-32, 498-501 (1985).
2.28. T. P. Chow, W. J. Lu, and A. J. Steckl, “Thin Film Properties of Sputtered Niobium Silicide on SiO2 and N+ Poly-Si,” J. Electrochem. Soc. 130, 324-327 (1983).
2.29. S. P. Murarka, “Metallization: Theory and Practice for VLSI and and ULSI,” (Butterworth-Heinemann, Boston, 1993) P. 188.
2.30. T. Shibata, K. Hieda, M. Sato, M. Konaka, R. L. M. Dang, and H. Iizuka, “An Optimally Designed Process for Submicron MOSFETs,” IEEE IEDM Techn. Dig. 647-650 (1981).
2.31. C. Y. Ting, G. J. Hu, S. S. Iyer, C. M. Osburn, and A. M. Schweighart, “The Use of TiSi2 in a Self-aligned Silicide Technology,” Proc. of the Electrochem. Soc. Meeting, 129, C326-C326 (1982).
2.32. C. K. Lau, Y. C. See, D. B. Scott, J. M. Bridges, S. M. Perna, and R. D. Davids, “Titanium Disilicide Self-aligned Source-Drain + Gate Technology,” IEEE IEDM Techn. Dig. 714-717 (1982).
2.33. M. E. Alperin, T. C. Holloway, R. A. Haken, C. D. Gosmeyer, R. V. Karnaugh, and W. D. Parmantie, “Development of the Self-aligned Silicide Process for VLSI Application,” IEEE Trans. Electron Devices ED-32, 141-149 (1985).
2.34. C. Y. Ting, “Silicides for Contacts and Interconnects,” IEEE IEDM Techn. Dig. 110-113 (1984).
2.35. Q. Z. Hong, and J. W. Mayer, “Thermal-Reaction between Pt Thin Films and Si1-xGex Alloys,” J. Appl. Phys. 66, 611-615 (1989).
2.36. H. K. Liou, X. Wu, and U. Gennser, “Interfacial Reactions and Schottky Barriers of Pt and Pd on Epitaxial Si1-xGex Alloys,” Appl. Phys. Lett. 60, 577-570 (1992).
2.37. R. D. Thompson, K. N. Tu, J. Angillelo, S. Delage, and S. S. Iyer, “Interfacial Reaction between Ni and MBE-Grown SiGe Alloys,” J. Electrochem. Soc. 135, 3161-3163 (1988).
2.38. D. B. Aldrich, Y. L. Chen, D. E. Sayers, R. J. Nemanich, S. P. Ashburn, and M. C. Ozzturk, “Stability of C54 Titanium Germanosilicide on a Si-Ge Alloy Substrate,” J. Appl. Phys. 77, 5107-5114 (1995).
2.39. Z. Wang, D. B. Aldrich, Y. L. Chen, D. E. Sayers, and R. J. Nemanich, “Silicide Formation and Stability of Ti/SiGe and Co/SiGe,” Thin Solid Films. 270, 555-560 (1995).
2.40. W. J. Qi, B. Z. Li, W. N. Huang, and Z. Q. Gu, “Solid-State Reaction of Co, Ti with Epitaxial-Grown Si1-xGex Film on Si(100) Substrate,” J. Appl. Phys. 77, 1086-1092 (1995).
Chapter 3
3.1. E. Kasper, H. J. Herzog and H. Kibbel, “A One-Dimensional SiGe Superlattice Grown by UHV Epitaxy,” Appl. Phys. 8, 199-205 (1975).
3.2. U. Gnutzmann and K. Clausecker, “Theory of Direct Optical Transitions in an Optical Indirect Semiconductor with a Superlattice Structure,” Appl. Phys. 3, 9-14 (1974).
3.3. J. C. Bean, Proc. 1st Int. Symp. on Silicon MBE ed J C Bean (Pennington, NJ: Electrochemical Society) (1985) pp. 85-87.
3.4. E. Kasper, H. J. Herzog, H. Jorke, and G. Abstreiter, “Strained Layer Si/SiGe Superlattices,” Superlatt. Microstruct. 3, 141-146 (1987).
3.5. B. S. Meyerson, “Low-Temperature Silicon Epitaxy by Ultrahigh Vacuum/Chemical Vapor Deposition,” Appl. Phys. Lett. 48, 797-799 (1986).
3.6. B. S. Meyerson, F. J. Himpsel, and K. J. Uram, “Bistable Conditions for Low-Temperature Silicon Epitaxy,” Appl. Phys. Lett. 57, 1034-1036 (1990).
3.7. M. L. Green, D. Brasen, H. Temkin, R. D. Yadvish, T. Boone, L. C. Feldman, M. Geva, B. E. Spear, “High-Gain Si-Ge Heterojunction Bipolar-Transistors Grown by Rapid Thermal Chemical Vapor-Deposition,” Thin Solid Films 184, 107-115 (1990).
3.8. T. O. Sedgwick, and P. D. Agnello, “Atmospheric-Pressure Chemical Vapor-Deposition of Si and SiGe at Low-Temperatures,” J. Vac. Sci. Technol. A 10, 1913-1919 (1992).
3.9. E. Kasper, A. Schuh, G. Bauer, B. Hollaender, and H. Kibbel, “Test of Vegard's Law in Thin Epitaxial SiGe Layers,” J. Cryst. Growth 157, 68-72 (1995).
3.10. E. A. Fitzgerald, Y. H. Xie, M. L. Green, D. Brasen, A. R. Kortan, “Totally Relaxed GexSi1–x Layers with Low Threading Dislocation Densities Grown on Si Substrates,” Appl. Phys. Lett. 59, 811-813 (1991).
3.11. J. Tersoff et al, “Dislocations and Strain Relief in Compositionally Graded layers,” Appl. Phys. Lett. 62, 693-695 (1993).
3.12. J. H. Li, C. S. Peng, Y. Wu, D. Y. Dai, J. M. Zhou, and Z. H. Mai, “Relaxed Si0.7Ge0.3 Layers Grown on Low-Temperature Si Buffers with Low Threading Dislocation Density,” Appl. Phys. Lett. 71, 3132-3134 (1997).
3.13. E. Kasper, K. Lyutovich, M. Bauer, and M. Oehme, “New Virtual Substrate Concept for Vertical MOS Transistors,” Thin Solid Films 336, 319-322 (1998).
3.14. A. R. Powell, S. S. Iyer, and F. K. LeGoues, “New Approach to the Growth of Low Dislocation Relaxed SiGe Material,” Appl. Phys. Lett. 64, 1856-1858 (1994).
3.15. C. Sheng, T. C. Zhou, Q. Cai, Dawei-Gong, M. R. Yu, X. J. Zhang, and X. Wang, “Suppression of Si-Ge Interfacial Vibration Mode in the Raman Spectrum of a Si6Ge4 Superlattice,” Phys. Rev. B 53, 10771-10774 (1996).
3.16. Y. H. Phang, C. Teichert, M. G. Lagally, L. J. Peticolas, J. C. Bean, and E. Kasper, “Correlated-Interfacial-Roughness Anisotropy in Si1-xGex/Si Superlattices,” Phys. Rev. B 50, 14435-14445 (1994).
3.17. J. Tersoff , Y. H. Phang, Z. Zhang, and M. G. Lagally, “Step-Bunching Instability of Vicinal Surfaces under Stress,” Phys. Rev. Lett. 75, 2730-2733 (1995).
3.18. F. Liu, J. Tersoff, and M. G. Lagally, “Self-Organization of Steps in Growth of Strained Films on Vicinal Substrates,” Phys. Rev. Lett. 80, 1268-1271 (1998).
3.19. P. Sutter, and M. G. Lagally, “Embedding of Nanoscale 3D SiGe Islands in a Si Matrix,” Phys. Rev. Lett. 81, 3471-3474 (1998).
3.20. R. M. Tromp, F. M. Ross, and M. C. Reuter, “Instability-Driven SiGe Island Growth,” Phys. Rev. Lett. 84, 4641-4644 (2000).
3.21. C. Schelling, Springholz, and F. Schäffler, “Kinetic Growth Instabilities on Vicinal Si(001) Surfaces,” Phys. Rev. Lett. 83, 995-998 (1999).
3.22. B. J. Spencer, P. W. Vorhees, and S. H. Davies, “Morphological Instability in Epitaxially Strained Dislocation-Free Solid Films: Linear Stability Theory,” J. Appl. Phys. 73, 4955-4970 (1993).
3.23. C. W. Snyder, J. F. Mansfield, and B. G. Orr, “Kinetically Controlled Critical Thickness for Coherent Islanding and Thick Highly Strained Pseudomorphic Films of InxGa1-xAs on GaAs(100),” Phys. Rev. B 46, 9551-9554 (1992).
3.24. J. Tersoff and F. K. LeGoues, “Competing Relaxation Mechanisms in Strained Layers,” Phys. Rev. Lett. 72, 3570-3573 (1994).
3.25. S. A. Chaparro, J. Drucker, Y. Zhang, D. Chandrasekhar, M. R. McCartney, and D. J. Smith, “Strain-Driven Alloying in Ge/Si(100) Coherent Islands,” Phys. Rev. Lett. 83, 1199-1202 (1999).
3.26. T. I. Kamins, G. Medeiros-Ribeiro, D. A. A. Ohlberg, and R. S. Williams, “Dome-to-Pyramid Transition Induced by Alloying of Ge Islands on Si(001),” Appl. Phys. A 67, 727-730 (1998).
3.27. S. Christiansen, M. Albrecht, H. P. Strunk, and H. J. Maier, “Strained State of Ge(Si) Islands on Si: Finite Element Calculations and Comparison to Convergent Beam Electron-Diffraction Measurements,” Appl. Phys. Lett. 64, 3617-3619 (1994).
3.28. J. H. Seok and J. Y. Kim, “Electronic Structure and Compositional Interdiffusion in Self-Assembled Ge Quantum Dots on Si(001),” Appl. Phys. Lett. 78, 3124-3126 (2001).
3.29. R. People, J. C. Bean, D. V. Lang, A. M. Sergent, H. L. Störmer, K. W. Wecht, R. T. Lynch, and K. Baldwin, “Modulation Doping in GexSi1–x/Si Strained Layer Heterostructures,” Appl. Phys. Lett. 45, 1231–1233 (1984).
3.30. Y. H. Xie, D. Monroe, E. A. Fitzgerald, P. J. Silverman, F. A. Thiel, and G. P. Watson, “Very High Mobility Two-Dimensional Hole Gas in Si/GexSi1–x/Ge Structures Grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 63, 2263-2264 (1993).
3.31. K. Ismail, F. K. Le Goues, K. L. Saenger, M. Arafa, J. O. Chu, P. M. Mooney, and B. S. Meyerson, “Identification of a Mobility-Limiting Scattering Mechanism in Modulation-Doped Si/SiGe Heterostructures,” Phys. Rev. Lett. 73, 3447-3450 (1994).
3.32. T. E. Whall, and E. H. C. Parker, “Si/SiGe/Si pMOS Performance - Alloy Scattering and Other Considerations,” Thin Solid Films 368, 297-305 (2000).
3.33. F. M. Bufler, P. Graf, S. Keith, and B. Meinerzhagen, “Full Band Monte Carlo Investigation of Electron Transport in Strained Si Grown on Si1– xGex Substrates,” Appl. Phys. Lett. 70, 2144-2146 (1997).
3.34. R. Oberhuber, G. Zandler, and P. Vogl, “Subband Structure and Mobility of Two-Dimensional Holes in Strained Si/SiGe MOSFET's,” Phys. Rev. B 58, 9941-9948 (1998).
3.35. R. Zachai, K. Eberl, G. Abstreiter, E. Kasper, and H. Kibbel, “Photoluminescence in Short-Period Si/Ge Strained-Layer Superlattices,” Phys. Rev. Lett. 64, 1055-1058 (1990).
3.36. U. Menczigar, G. Abstreiter, J. Olajos, H. G. Grimmeiss, H. Kibbel, H. Presting, and E. Kasper, “Enhanced Band-Gap Luminescence in Strain-Symmetrized (Si)m/(Ge)n Superlattices,” Phys. Rev. B 47, 4099-4102 (1993).
3.37. N. Usami, F. Issiki, D. K. Nayak, Y. Shiraki, and S. Fukatsu, “Enhancement of Radiative Recombination in Si-Based Quantum Wells with Neighboring Confinement Structure,” Appl. Phys. Lett. 67, 524-526 (1995).
3.38. M. Gail, G. Abstreiter, J. Olajos, J. Engvall, H. Grimmeiss, H. Kibbel, and H. Presting, “Room-Temperature Photoluminescence of GemSinGem Structures,” Appl. Phys. Lett. 66, 2978–2980 (1995).
3.39. K. Brunner, K. Eberl, and W. Winter, “Near-Band-Edge Photoluminescence from Pseudomorphic Si1-yCy/Si Quantum Well Structures,” Phys. Rev. Lett. 76, 303-306 (1996).
3.40. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–Semiconductor–Metal Near-Infrared Light Detector Based on Epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175-3177 (1998).
3.41. B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, “Monolithic Integration of a SiGe/Si Modulator and Multiple Quantum Well Photodetector for 1.55 µm Operation,” Appl. Phys. Lett. 73, 3504-3505 (1998).
3.42. H. Sunamura, N. Usami, Y. Shiraki, and S. Fukatsu, “Observation of Lateral Confinement Effect in Ge Quantum Wires Self-Aligned at Step Edges on Si(100),” Appl. Phys. Lett. 68, 1847-1849 (1995).
3.43. H. Omi, and T. Ogino, “Self-Assembled Ge Nanowires Grown on Si(113),” Appl. Phys. Lett. 71, 2163-2165 (1997).
3.44. H. Omi, and T. Ogino, “Self-Organization of Ge Islands on High-Index Si Substrates,” Phys. Rev. B 59, 7521-7528 (1999).
3.45. P. Schittenhelm, M. Gail, J. Brunner, J. F. Nützel, and G. Abstreiter, “Photoluminescence Study of the Crossover from Two-Dimensional to Three-Dimensional Growth for Ge on Si(100),” Appl. Phys. Lett. 67, 1292-1294 (1995).
3.46. Y. W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, “Kinetic Pathway in Stranski-Krastanov Growth of Ge on Si(001),” Phys. Rev. Lett. 65, 1020-1023 (1990).
3.47. C. Lee, and A. L. Barabasi, “Spatial Ordering of Islands Grown on Patterned Surfaces,” Appl. Phys. Lett. 73, 2651-2653 (1998).
3.48. Y. Homma, P. Finnie, and T. Ogino, “Aligned Island Formation Using an Array of Step Bands and Holes on Si(111),” Appl. Phys. Lett. 74, 815-817 (1999).
3.49. G. Jin, J. L. Liu, S. G. Thomas, Y. H. Luo, K. L. Wang, and B. Y. Nguyen, “Controlled Arrangement of Self-Organized Ge Islands on Patterned Si (001) Substrates,” Appl. Phys. Lett. 75, 2752-2754 (1999).
3.50. G. Jin, J. L. Liu, and K. L. Wang, “Regimented Placement of Self-Assembled Ge Dots on Selectively Grown Si Mesas,” Appl. Phys. Lett. 76, 3591-3593 (2000).
3.51. T. S. Kuan and S. S. Iyer, “Strain Relaxation and Ordering in SiGe Layers Grown on (100), (111), and (110) Si Surfaces by Molecular-Beam Epitaxy,” Appl. Phys. Lett. 59, 2242-2244 (1991).
3.52. Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, “Vertically Self-Organized InAs Quantum Box Islands on GaAs(100),” Phys. Rev. Lett. 75, 2542-2545 (1995).
3.53. J. Tersoff, C. Teichert, and M. G. Lagally, “Self-Organization in Growth of Quantum Dot Superlattices,” Phys. Rev. Lett. 76, 1675-1678 (1996).
3.54. O. G. Schmidt and K. Eberl, “Multiple Layers of Self-Asssembled Ge/Si Islands: Photoluminescence, Strain Fields, Material Interdiffusion, and Island Formation,” Phys. Rev. B 61, 13 721-13729 (2000).
3.55. O. G. Schmidt, C. Lange, and K. Eberl, “Photoluminescence Study of the Initial Stages of Island Formation for Ge Pyramids/Domes and Hut Clusters on Si(001),” Appl. Phys. Lett. 75, 1905-1907 (1999).
Chapter 4
4.1. J. B. Lai, C. S. Liu, and L. J. Chen, “Formation of Amorphous Interlayers by Solid-State Diffusion in Ti Thin Films on Epitaxial Si–Ge Layers on Silicon and Germanium,” J. Appl. Phys. 78, 6539-6542 (1995).
Chapter 5
5.1. S. P. Murarka, “Self-Aligned Silicides or Metals for Very Large-Scale Integrated-Circuit Applications,” J. Vac. Sci. Technol. B 4, 1325 (1986).
5.2. J. B. Lasky, J. S. Nakos, O. J. Cain, and P. J. Geiss, “Comparison of Transformation to Low-Resistivity Phase and Agglomeration of TiSi2 and CoSi2,” IEEE Trans. Electron Devices 38, 262-269 (1991).
5.3. K. Maex, “Silicides for Intergated-Circuits-TiSi2 and CoSi2,” Mater. Sci. Eng. R 11, 53-153 (1993).
5.4. R. Mukai, S. Ozawa, and H. Yaki, “Compatibility of NiSi in the Self-aligned Silicide Process for Deep Submicrometer Devices,” Thin Solid Films 270, 567-572 (1995).
5.5. T. Morimoto, T. Ohguro, HS. Momose, T. Iinuma, I. Kunishima, K. Suguro, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, Y. Katsumata, and H. Iwai, “Self-Aligned Nickel-Mono-Silicide Technology for High-Speed Deep-Submicrometer Logic CMOS ULSI,” IEEE Trans. Electron Devices 42, 915-922 (1995).
5.6. R. T. Tung, “Oxide Mediated Epitaxy of CoSi2 on Silicon,” Appl. Phys. Lett. 68, 3461-3463 (1996).
5.7. C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, K. Maex, H. Bender, B. Brijs, and W. Vandervorst, “Formation of Epitaxial CoSi2 by a Cr or Mo Interlayer: Comparison With a Ti Interlayer,” J. Appl. Phys. 89, 21460-215 (2001).
5.8. X. P. Qu, G. P. Ru, Y. Z. Han, B. L. Xu, B. Z. Li, N. Wang, and P. K. Chu, “Epitaxial growth of CoSi2 film by Co/a-Si/Ti/Si(100) multilayer solid state reaction,” J. Appl. Phys. 89, 2641-2648 (2001).
5.9. M. Lawrence, A. Dass, D. B. Fraser, and C. W. Wei, “Growth of Epitaxial CoSi2 on (100)Si,” Appl. Phys. Lett. 58, 1308-1310 (1991).
5.10. C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, and K. Maex, “Influence of Mixing Entropy on the Nucleation of CoSi2,” Phys. Rev. B 62, 12045-12051 (2001).
5.11. A. Lauwers, K. Kyllesbech Larsen, M. Van Hove, R. Verbeeck, K. Maex, M. Van Rossum, A. Vercaemst, R. Van Meirhaeghe, and F. Cardon, “Epitaxial Growth of CoSi2 Film by Co/a-Si/Ti/Si(100) Multilayer Solid State Reaction,” J. Appl. Phys. 77, 2525-2536 (1995).
5.12. L. F. Mattheiss and D. R. Hamann, “Electronic Structure and Properties of CoSi2,” Phys. Rev. B 37, 10623-10627 (1988).
5.13. L. J. Chen and K. N. Tu, “Epitaxial-Grown of Transistion-Metal Silicides on Silicon,” Mater. Sci. Reports 6, 53-140 (1991).
5.14. R. T. Tung and F. Schrey, “Increased Uniformity and Thermal Stability of CoSi2 Thin Films by Ti Capping,” Appl. Phys. Lett. 67, 2164-2166 (1995).
5.15. D. Mangelinck, P. Gas, J. M. Gay, B. Pichaud and O. Thomas, “Effect of Co, Pt, and Au Additions on the Stability and Epitaxy of NiSi2 Films on (111)Si,” J. Appl. Phys. 84, 2583-2590 (1998).
5.16. L. W. Cheng, S. L. Cheng, L. J. Chen, H. C. Chien, H. L. Lee, F. M. Pan, “Formation of Ni Silicides on (001)Si with a Thin Interposing Pt Layer,” J. Vac. Sci. Technol. A 18, 1176-1179 (2000).
5.17. T. G. Finstad, D. D. Anfiteatro, V. R. Deline, F. M. d,Heurle, P. Gas, V. L. Moruzzi, K. Schwarz, and J. Tersoff, “The Formation of Disilicides from Bilayers of Ni/Co and Co/Ni on Silicon- Phase-Separation and Solid-Solution,” Thin Solid Films 135, 229-243 (1986).
5.18. F. M. d,Heurle, D. D. Anfiteatro, V. R. Deline, and T. G. Finstad, “Reaction of Silicon with Films of Co-Ni Alloys- Phase-Separation of the Monosilicides and Nucleation of the Disilicides,” Thin Solid Films 128, 107-124 (1985).
Chapter 6
6.1. P. T. Goeller, B. I. Boyanov, D. E. Sayers, and R. J. Nemanich, “Germanium Segregation in the Co/SiGe/Si(001) Thin Film System,” J. Mater. Res. 14, 4372-4384 (1999).
6.2. B. I. Boyanov, P. T. Goeller, D. E. Sayers, and R. J. Nemanich, “Film Thickness Effects in the Co-Si1 – xGex Solid Phase Reaction,” J. Appl. Phys. 84, 4285-4291 (1998).
6.3. R. A. Donaton, K. Maex, A. Vantomme, G. Langouche, Y. Morciaux, A. St. Amour, and J. C. Sturm, “Co Silicide Formation on SiGeC/Si and SiGe/Si Layers,” Appl. Phys. Lett. 70, 1266-1268 (1997).
6.4. R. T. Tung, and F. Schrey, “Increased Uniformity and Thermal Stability of CoSi2 Thin Films by Ti Capping,” Appl. Phys. Lett. 67, 2164-2166 (1995).
6.5. R. T. Tung, “Oxide mediated epitaxy of CoSi2 on silicon,” Appl. Phys. Lett. 68, 3461-3463 (1996).
6.6. Ji-Soo Park, Byung Hak Lee, Jong-Uk Bae, Jeong Soo Byun, and Jae Jeong Kim, “Formation of CoTi Barrier and Increased Thermal Stability of CoSi2 Film in Ti Capped Co/Si(100) System,” Appl. Phys. Lett. 73, 2302-2304 (1998).
6.7. R. Pretorius, M. C. Chen, and H. A. Ras, “CoSi2 Growth-Kinetics, Phase Sequence and Mechanism,” Mater. Lett. 3, 282-286 (1985).
6.8. R. Pretorius, C. C. Theron, A. Vantomme, and J. W. Mayer, “Compound Phase Formation in Thin Film Structures,” Critical Reviews in Solid State and Materials Science 24, 1-62 (1999).
6.9. J. B. Lai, C. S. Liu, and L. J. Chen, “Formation of Amorphous Interlayers by Solid-State Diffusion in Ti Thin Films on Epitaxial Si–Ge Layers on Silicon and Germanium,” J. Appl. Phys. 78, 6539-6542 (1995).
6.10. C. R. Chen, and L. J. Chen, “Morphological Evolution of The Low-Temperature Oxidation of Silicon with a Gold Overlayer,” J. Appl. Phys. 78, 919-925 (1995).
6.11. A. Appelbaum, R. V. Knoell, and S. P. Murarka, “Study of Cobalt-Disilicide Formation from Cobalt Monosilicide,” J. Appl. Phys. 57, 1880-1886 (1985).
6.12. F. M. d,Heurle, “Nucleation of a New Phase from the Interaction of 2 Adjacent Phases-Some Silicides,” J. Mater. Res. 3, 167-195 (1988).
6.13. C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, and K. Maex, “Influence of Mixing Entropy on the Nucleation of CoSi2,” Phys. Rev. B 62, 12045-12051 (2001).
Chapter 7
7.1. H.K. Liou, X.Wu, U. Gennser, V.P. Kesan, S.S. Iyer, K.N. Tu, and E.S. Yang, “Interfacial Reactions and Schottky Barriers of Pt and Pd on Epitaxial Si1–xGex Alloys,” Appl. Phys. Lett. 60, 577-579 (1992).
7.2. X. Xiao, J. C. Sturm, S. R. Rarihar, S. A. Lyon, D. Meyerhofer, S. Palfrey, and F. V. Shallcross, “Silicide Strained Si1-xGex Schottky-Barrier Infrared Detectors,” IEEE Electron. Dev. Lett. 14, 199-201 (1993).
7.3. J.D. Lee, B.C. Shim, and B.G. Park, “Silicide Application on Gated Single-Crystal, Polycrystalline and Amorphous Ailicon FEAs - Part II: Co Silicide,” IEEE Trans. Electron Dev. 48 , 155-160 (2001).
7.4. B. I. Boyanov, P. T. Goeller, D. E. Sayers, and R. J. Nemanich, “Preferential Co–Si Bonding at the Co/SiGe(100) Interface,” Appl. Phys. Lett. 71, 3060-3062 (1997).
7.5. P. T. Goeller, B. I. Boyanov, D. E. Sayers, R. J. Nemanich, A.F. Meyers, and E.B. Steel, “Germanium Segregation in the Co/SiGe/Si(001) Thin Film System,” J. Mater. Res. 14, 4372-4834 (1999).
7.6. H. J. Huang, K. M. Chen, C. Y. Chang, T. Y. Huang, T. C. Chang, L. P. Chen, and G. W. Huang, “Study of Boron Effects on The Reaction of Co and Si1-xGex at Various Temperatures,” J. Vac. Sci. Technol. A 18, 1448-1454 (2000).
7.7. R. A. Donaton, K. Maex, A. Vantomme, G. Langouche, Y. Morciaux, A. St. Amour, and J. C. Sturm, “Co Silicide Formation on SiGeC/Si and SiGe/Si Layers,” Appl. Phys. Lett. 70, 1266-1268 (1997).
7.8. B. I. Boyanov, P. T. Goeller, D. E. Sayers, and R. J. Nemanich, “Film Thickness Effects in the Co-Si1 – xGex Solid Phase Reaction,” J. Appl. Phys. 84, 4285-4291 (1998).
7.9. C. Detavernier, T. R. L. Van Meirhaeghe, F. Cardon, and K. Maex, “CoSi2 Nucleation in the Presence of Ge,” Thin Solid Films 384, 243-250 (2001).
7.10. E. G. Colgan, J. P. Gambino, Q. Z. Hong, “Formation and Stability of Silicides on Polycrystalline Silicon,” Mater. Sci. Eng. R 16, 43-96 (1996).
7.11. J. B. Lai, C. S. Liu, and L. J. Chen, “Formation of Amorphous Interlayers by Solid-State Diffusion in Ti Thin Films on Epitaxial Si–Ge Layers on Silicon and Germanium,” J. Appl. Phys. 78, 6539-6542 (1995).
7.12. J. F. Chen, and L. J. Chen, “Thermal Stability of Ti Thin Films on Polycrystalline and Amorphous Silicon,” Thin Solid Films 293, 34-39 (1997).
7.13. W. J. Qi, B. Z. Li, W. N. Huang, Z. G. Gu, H. Q. Lu, X. J. Zhang, M. Zhang G. S. Dong, D. C. Miller, and R. G. Aitken, “Solid State Reaction of Co,Ti with Epitaxially-Grown Si1–xGex Film on Si(100) Substrate,” J. Appl. Phys. 77, 1086-1092 (1995).
7.14. O. Nur, M. Willander, H. H. Radamson, M. R. Sardela, G. V. Hansson, C. S. Peterson, and K. Maex, “Strain Characterization of CoSi2/n-Si0.9Ge0.1/p-Si Heterostructures,” Appl. Phys. Lett. 64, 440-442 (1994).
7.15. H. J. Huang, K. M. Chen, C. Y. Chang, T. Y. Huang, L. P. Chen, and G. W. Huang, “Study on Ge/Si Ratio, Silicidation, and Strain Relaxation of High Temperature Sputtered Co/Si1–xGex Structures,” J. Appl. Phys. 88, 1831-1837 (2000).
7.16 J.A. Floro and E. Chason, “Measuring Ge Segregation by Real-Time Stress Monitoring during Si1–xGex Molecular Beam Epitaxy,” Appl. Phys. Lett. 69, 3830-3832 (1996).
7.17. J. Y. Yew, H. C. Tseng, L. J. Chen, K. Nakamura, and C. Y. Chang, “Formation of Self-Aligned CoSi2 on Selective Epitaxial Growth Silicon Layer on (001)Si inside 0.1–0.6 µm Oxide Openings Prepared by Electron Beam Lithography,” Appl. Phys. Lett. 69, 3692-3694 (1996).
Chapter 8
8.1. H.K. Liou, X.Wu, U. Gennser, V.P. Kesan, S.S. Iyer, K.N. Tu, and E.S. Yang, “Interfacial Reactions and Schottky Barriers of Pt and Pd on Epitaxial Si1–xGex Alloys,” Appl. Phys. Lett. 60, 577-579 (1992).
8.2. J. B. Lasky, J. S. Snakos, O. J. Cain, and P. J. Geiss, “Comparison of Transformation to Low-Resistivity Phase and Agglomeration of TiSi2 and CoSi2,” IEEE Trans. Electron Devices ED-38, 262-269 (1991).
8.3. K. Maex, “Silicides for Intergated-Circuits-TiSi2 and CoSi2,” Mater. Sci. Engng. R 11, 53-153 (1993).
8.4. H. K. Liou, X. Wu, U. Gennser, V. P. Kesan, S. S. Iyer, K. N. Tu, and E. S. Yang, “Interfacial Reactions and Schottky Barriers of Pt and Pd on Epitaxial Si1–xGex Alloys,” Appl. Phys. Lett. 60, 577-579 (1992).
8.5. X. Xiao, J. C. Sturm, S. R. Rarihar, S. A. Lyon, D. Meyerhofer, S. Palfrey, and F. V. Shallcross, “Silicide Strained Si1-xGex Schottky-Barrier Infrared Detectors,” IEEE Electron. Dev. Lett. 14, 199-201 (1993).
8.6. W. J. Qi, B. Z. Li, W. N. Huang, Z. G. Gu, H. Q. Lu, X. J. Zhang, M. Zhang, G. S. Dong, D. C. Miller, and R. G. Aitken, “Solid State Reaction of Co,Ti with Epitaxially-Grown Si1–xGex Film on Si(100) Substrate,” J. Appl. Phys. 77, 1086-1092 (1995).
8.7. J. B. Lai and L. J. Chen, “Effects of Composition on the Formation Temperatures and Electrical Resistivities of C54 Titanium Germano Silicide in Ti–Si1 – xGex Systems,” J. Appl. Phys. 86, 1340-1345 (1999).
8.8. W. W. Wu, T. F. Chiang, S. L. Cheng, S. W. Lee, L. J. Chen, Y. H. Peng and H. H. Cheng, “Enhanced Growth of CoSi2 on Epitaxial Si0.7Ge0.3 with a Sacrificial Amorphous Si Interlayer,” Appl. Phy. Lett. 81, 820-822 (2002).
8.9. J. B. Lai, C. S. Liu, and L. J. Chen, “Formation of Amorphous Interlayers by Solid-State Diffusion in Ti Thin Films on Epitaxial Si–Ge Layers on Silicon and Germanium,” J. Appl. Phys. 78, 6539-6542 (1995).
8.10. O. Nur, M. Willander, H. H. Radamson, M. R. Sardela, G. V. Hansson, C. S. Peterson, and K. Maex, “Strain Characterization of CoSi2/n-Si0.9Ge0.1/p-Si Heterostructures,” Appl. Phys. Lett. 64, 440-442 (1994).
8.11. H. J. Huang, K. M. Chen, C. Y. Chang, T. Y. Huang, L. P. Chen, and G. W. Huang, “Study on Ge/Si Ratio, Silicidation, and Strain Relaxation of High Temperature Sputtered Co/Si1–xGex Structures,” J. Appl. Phys. 88, 1831-1837 (2000).
8.12. P. L. Rossiter, “The Electrical Resistivity of Metals and Alloys, “ (Cambridge University Press, London, 1987)
8.13. L.J. Chen, J.B. Lai, and C.S. Lee, “High-Resolution Transmission Electron Microscopy of Phase Formation and Growth in Metal-Si-Ge Systems,” Micron 33, 535-541 (2002).
8.14. R. A. Donaton, K. Maex, A. Vantomme, G. Langouche, Y. Morciaux, A. St. Amour, and J. C. Sturm, “Co Silicide Formation on SiGeC/Si and SiGe/Si Layers,” Appl. Phys. Lett. 70, 1266-1268 (1997).
8.15. B. I. Boyanov, P. T. Goeller, D. E. Sayers, and R. J. Nemanich, “Film Thickness Effects in the Co-Si1 – xGex Solid Phase Reaction,” J. Appl. Phys. 84, 4285-4291 (1998).
8.16. C. Detavernier, T. R. L. Van Meirhaeghe, F. Cardon, and K. Maex, “CoSi2 Nucleation in the Presence of Ge,” Thin Solid Films 384, 243-250 (2001).
8.17. B. I. Boyanov, P. T. Goeller, D. E. Sayers, and R. J. Nemanich, “Preferential Co–Si Bonding at the Co/SiGe(100) Interface,” Appl. Phys. Lett. 71, 3060-3062 (1997).
8.18. P. T. Goeller, B. I. Boyanov, D. E. Sayers, R. J. Nemanich, A. F. Meyers, and E. B. Steel, “Germanium Segregation in the Co/SiGe/Si(001) Thin Film System,” J. Mater. Res. 14, 4372-4384 (1999).
8.19. H. J. Huang, K. M. Chen, C. Y. Chang, T. Y. Huang, T. C. Chang, L. P. Chen, and G. W. Huang, “Study of Boron Effects on The Reaction of Co and Si1-xGex at Various Temperatures,” J. Vac. Sci. Technol. A 18, 1448-1454 (2000).
8.20. J. F. Chen and L. J. Chen, “Thermal Stability of Ti Thin Films on Polycrystalline and Amorphous Silicon,” Thin Solid Films 293, 34-39 (1997).
8.21. E. G. Colgan, J. P. Gambino, and Q. Z. Hong, “Formation and Stability of Silicides on Polycrystalline Silicon,” Mater. Sci. Eng. R 16, 43-96 (1996).
8.22. J. Y. Yew, H. C. Tseng, L. J. Chen, K. Nakamura, and C. Y. Chang, “Formation of Self-Aligned CoSi2 on Selective Epitaxial Growth Silicon Layer on (001)Si inside 0.1–0.6 µm Oxide Openings Prepared by Electron Beam Lithography,” Appl. Phys. Lett. 69, 3692-3694 (1996).
Chapter 9
9.1. F.M. Ross, P.A. Bennett, R.M. Tromp, J. Tersoff, and M. Reuter, “Growth Kinetics of CoSi2 and Ge Islands Observed with In Situ Transmission Electron Microscopy,” Micron 30, 21-32 (1999).
9.2. S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, “Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices,” Science 287, 1989-1992 (2000).
9.3. K. Douglas, G. Devaud, and N. Clark, “Transfer of Biologically Derived Nanometer-scale Patterns to Smooth Substrates,” Science, 257, 642-644 (1992).
9.4. M. Park, C. Harrison, P. M. Chaikin, R. A. Register, D. H. Adamson, “Block Copolymer Lithography: Periodic Arrays of Similar to 10(11) holes in 1 Square Centimeter,” Science 276, 1401-1404 (1997).
9.5. J. Tersoff, C. Teichert, and M. G. Lagally, “Dimensional Hausdorff Properties of Singular Continuous Spectra,” Phys. Rev. Lett. 76, 1765-1769 (1996).
9.6. T. Thurn-Albrecht, J. Schotter, G. A. Kästle, N. Emley, T. Shibauchi, L. rusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, T. P. Russell, “Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates,” Science 290, 2126-2129 (2000).
9.7. W. A. Lopes and H. M. Jaeger, “Hierarchical Self-Assembly of Metal Nanostructures on Diblock Copolymer Scaffolds,” Nature 414, 735-738 (2001).
9.8. C. T. Black, C. B. Murray, R. L. Sandstrom, Shouheng Sun, “Spin-dependent Tunneling in Self-assembled Cobalt-Nanocrystal Superlattices,” Science 290, 1131-1134 (2000).
9.9. D. D. Chambliss, R. J. Wilson, and S. Chiang, “Nucleation of Ordered Ni Island Arrays on Au(111) by Surface-Lattice Dislocations,” Phys. Rev. Lett. 66, 1721-1724 (1991).
9.10. K. Rim, J. L. Hoyt, and L. F. Gibbons, “Fabrication and Analysis of Deep Submicron Strained-Si N-MOSFET's,” IEEE Trans. Electron Devices 47, 1406-1415 (2000).
9.11. S. J. Koester, R. Hammond, J. O. Chu, P. M. Mooney, J. A. Ott, L. Perraud, K. A. Jenkins, C. S. Webster, I. Lagnado, and P. R. De La Houssaye, “SiGe pMODFETs on Silicon-on-Sapphire Substrates with 116 GHz f(max),” IEEE Electron Device Lett. 22, 92-94 (2000).
9.12. S.Yu. Shiryaev, F. Jensen, J. Lundsgaard Hansen, J. Wulff Petersen, and A. Nylandsted Larsen, “Nanoscale Structuring by Misfit Dislocations in Si1-xGex/Si Epitaxial Systems,” Phys. Rev. Lett. 78, 503-506 (1997).
9.13. Y. H. Xie, S. B. Samavedam, M. Bulsara, T. A. Langdo, and E. A. Fitzgerald, “Relaxed Template for Fabricating Regularly Distributed Quantum Dot Arrays,”Appl. Phys. Lett. 71, 3567-3568 (1997).
9.14. W. W. Wu, T. F. Chiang, S. L. Cheng, S. W. Lee, L. J. Chen, Y. H. Peng, and H. H. Cheng, “Enhanced Growth of CoSi2 on Epitaxial Si0.7Ge0.3 with a Sacrificial Amorphous Si Interlayer,” Appl. Phy. Lett. 81, 820-822 (2002).
9.15. S.S. Lau and M.A. Nicolet, in Materials and Process Characterization, edited by N.G. Einspruch and G.B. Larrabee (Academic Press, New York, 1983) p. 329.
9.16. J.H. Zhu, K. Brunner, and G. Abstreiter, “Two-Dimensional Ordering of Self-Assembled Ge Islands on Vicinal Si(001) Surfaces with Regular Ripples,” Appl. Phys Lett. 73, 620-622 (1998).
9.17. C. Teichert, J.C. Bean, and M.G. Lagally, “Self-Organized Nanostructures in Si1-xGex Films on Si(001),” Appl. Phys. A 67, 675-685 (1998).
9.18. K. Brunner, “Si/Ge nanostructures,” Rep. Prog. Phys. 65, 27-72 (2002).