研究生: |
陳睿鈞 Chen, Jui-Chun |
---|---|
論文名稱: |
智慧型高分子微晶片結構開發及其應用於微流體動力模組系統 Development of Smart Polymer Chip Structures and Their Application to Microfluidic Power-Modular Systems |
指導教授: |
洪健中
Hong, Chien-Chong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 形狀記憶高分子 、預程式化微變形晶片 、真空壓力 、可拋棄式實驗室晶片 、微流體動力模組 |
外文關鍵詞: | Shape memory polymer, Pre-programmed μ-Transformer chip, Vacuum generation, Disposable Lab-on-a-Chip, Microfluidic power-module system |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文專利申請中,暫不公開
[1] 陳建人,微機電系統技術與應用,行政院國家科學委員會精密儀器發展中心,2003。
[2] C. H. Ahn, J. W. Choi, G Beaucage, J. Nevin, J. B. Lee, A. Puntambekar, and J. Y. Lee , “Disposable smart lab on a chip for point-of-care clinical diagnostics”, Proc. IEEE, Special Issue on Biomedical Applications for MEMS and Microfluidics, vol. 92, pp. 154–73, 2004.
[3] D. C. Duffy, J. C. McDonald, Olivier J. A. Schueller, and George M. Whitesides, “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane)”, Analytical Chemistry , vol. 70, pp. 4974-4984, 1998.
[4] S. R. Quake and A. Scherer, “From Micro-to Nanofabrication with Soft Materials”, Science, vol. 290, pp. 1536-1540, 2000.
[5] K. Otsuka and C. M. Wayman, Shape Memory Materials. New York: Cambridge University Press, 1998.
[6] W. J. Buehler, J. V. Gilfrich, and R. C. Wiley, “Effect of Low-Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi”, Journal of Applied Physics, vol. 34, pp. 1475, 1963.
[7] K. Otsuka and X. Ren, “Recent Developments in The Research of Shape Memory Alloys”, Intermetallics, vol. 7, pp. 511-528, 1999.
[8] M. V. Swain, “Shape Memory Behaviour in Partially Stabilized Zirconia Ceramics”, Nature, vol. 322, pp. 234 - 236, 1986.
[9] M. Behl and A. Lendlein, “Shape-Memory Polymers”, Materials Today, vol. 10, pp. 20-28, 2007.
[10] L. B. Vernon and H. M. Vernon, “Producing Molded Articles such as Dentures from Thermoplastic Synthetic Resins”, US Patent, 2234993, 1941.
[11] C. Liu, H. Qin, and P. T. Mather, “Review of Progress in Shape-Memory Polymers”, Journal of Materials Chemistry, vol. 17, pp. 1543–1558, 2007.
[12] Y. Osada and J. P. Gong, “Soft and Wet Materials: Polymer Gels”, Advance Materials, vol. 10, pp. 827-837, 1998.
[13] A. Lendlein and H. Jiang, "Light-Induced Shape-Memory Polymers", Nature, vol. 434, pp. 879-881, 2005.
[14] A. Lendlein and R. Langer, “Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications”, Science, vol. 296. , pp. 1673 – 1676, 2002.
[15] 林建中,高分子化學原理,第十二版,歐亞書局有限公司,2001。
[16] A. E. Torma, and D. Raghavan, “Biodesulfurization of rubber materials”, In: Bioprocess Engineering Symposium, American Society of Mechanical Engineers, Bioengineering Division, vol. 16, pp. 81-87, 1990.
[17] 薛敬和,高分子化學實驗法,第九版,高立圖書有限公司,1997。
[18] F. Li and R. C. Larock, “New Soybean Oil–Styrene–Divinylbenzene Thermosetting Copolymers. V. Shape Memory Effect”, Journal of Applied Polymer Science, vol. 84, pp. 1533–1543, 2002.
[19] V. A. Beloshenko, Y. E. Beygelzimer, A. P. Borzenko, and V. N. Varyukhin, “Shape Memory Effect in The Epoxy Polymer–Thermoexpanded Graphite System”, Composites Part A: Applied Science and Manufacturing, vol. 33, pp. 1001-1006, 2002.
[20] C. Liu, S. B. Chun, P. T. Mather, L. Zheng, E. H. Haley, and E. B. Coughlin, “Chemically Cross-Linked Polycyclooctene: Synthesis, Characterization, and Shape Memory Behavior”, Macromolecules, vol. 35, pp. 9868-9874, 2002.
[21] H. G. Jeon, P. T. Mather, and T. S. Haddad, “Shape Memory and Nanostructure in Poly(norbornyl-POSS) Copolymers”, Polymer International, vol. 49, pp. 453-457, 2000.
[22] T. Ikematsu, Y. Kishimoto, and M. Karaushi, “Block Copolymer Bumpers With Good Shape Memory”, Japan Patent, 02022355, 1990.
[23] Y. Wada, H. Hirose, and T. Kasahra, “Viscoelastic Behavior of Copolymers of Methacrylate and n-Butyl Methacrylate and Glass Polishing by Use of Them”, Japanese Journal of Applied Physics, vol. 3, pp. 45-54, 1964.
[24] C. Ton-That, A. G. Shard, R. Daley, and R. H. Bradley, “Effects of Annealing on the Surface Composition and Morphology of PS/PMMA Blend”, Macromolecules, vol. 33, pp. 8453-8459, 2000.
[25] W. Zhang, B. X. Fu, Y. Seo, E. Schrag, B. Hsiao, P. T. Mather, N. L. Yang, D. Xu, H. Ade, M. Rafailovich, and J. Sokolov, “Effect of Methyl Methacrylate / Polyhedral Oligomeric Silsesquioxane Random Copolymers in Compatibilization of Polystyrene and Poly(methyl methacrylate) Blends”, Macromolecules , vol. 35, pp. 8029-8038, 2002.
[26] H. Weickmann, R. Delto, R. Thomann, R. Brenn, W. Doll, and R. Mulhaupt, “PMMA Nanocomposites and Gradient Materials Prepared by Means of Polysilsesquioxane (POSS) Self-Assembly”, Journal of Materials Science, vol. 42, pp. 87-92, 2007.
[27] C. DeArmitt and P. Wheeler, “POSS Keeps High Temperature Plastics Flowing”, Plastics Additives and Compounding, vol. 10, pp. 36-39, 2008.
[28] A. Lendlein and S. Kelch, “Shape-Memory Polymers”, Angewandte Chemie, vol. 41, pp. 2034-2057, 2002.
[29] G. J. Monkman, “Advances in Shape Memory Polymer Actuation”, Mechatronics, vol. 10, pp. 489-498, 2000.
[30] Y. Xia and G. M. Whitesides, “Soft Lithography”, Annual Review of Materials Science, vol. 28, pp. 153-184, 1998.
[31] L. T. Romankiw, “A Path: from Electroplating Through Lithographic Masks in Electronics to LIGA in MEMS”, Electrochimica Acta, vol. 42, pp. 2985-3005, 1997 .
[32] P. Muralt, “Ferroelectric Thin Films for Micro-Sensors and Actuators: A Review”, Journal of Micromechanics and Microengineering, vol. 10, pp. 136–146, 2000.
[33] H. Koerner, G. Price, N. A. Pearce, M. Alexander, and R. A. Vaia,” Remotely Actuated Polymer Nanocomposites—Stress-Recovery of Carbon-Nanotube-Filled Thermoplastic Elastomers”, Nature Materials, vol. 3, pp. 115-120, 2004.
[34] H. A. Yang, C. W. Lin, C. Y. Peng and W. Fang, “On The Selective Magnetic Induction Heating of Micron Scale Structures”, Journal of Micromechanics and Microengineering, vol. 16, pp. 1314–1320, 2006.
[35] R. Mohr, K. Kratz, T. Weigel, M. Lucka-Gabor, M. Moneke, and A. Lendlein, “Initiation of Shape-Memory Effect by Inductive Heating of Magnetic Nanoparticles in Thermoplastic Polymers”, PNAS, pp 3540–3545, 2006.
[36] K. C. Young, H. M. Lien, C. C. Lin, T. T. Chang, G. B. Lee, and S. H. Chen, “Microchip and Capillary Electrophoresis for Quantitative Analysis of Hepatitis C Virus Based on RT-Competitive PCR”, Talanta, vol. 56, pp. 323–330, 2002.
[37] D. J. Laser and J. G. Santiago, “A Review of Micropumps”, Journal of Micromechanics and Microengineering, vol. 14, R35–R64, 2004.
[38] B. D. Iverson and S. V. Garimella, “Recent Advances in Microscale Pumping Technologies: A Review and Evaluation, Microfluid Nanofluid”, vol. 5, pp. 145–174, 2008.
[39] J. G. Smits, “Piezoelectric Micropump With 3 Valves Working Peristaltically”, Sensors and Actuators A: Physical, vol. 21, pp. 203-206, 1990.
[40] M. Koch, N. Harris, A. G. R. Evans, N. M. White, and A. Brunnschweiler, “A Novel Micromachined Pump Based On Thick-Film Piezoelectric Actuation”, Sensors and Actuators A: Physical, vol. 70, pp. 98-103, 1998.
[41] J. H. Tsai and L. Lin, “A Thermal-Bubble-Actuated Micronozzle-Diffuser Pump”, Journal of Microelectromechanical Systems , vol. 11 pp. 665–71, 2002.
[42] G. Kovacs, Micromachine Transducers Sourcebook, Palo Alto, CA: WCB/McGraw-Hill, 1998.
[43] K. W. Oh and C. H. Ahn, “A Review of Microvalves”, Journal of Micromechanics and Microengineering, vol. 16, R13–R39, 2006.
[44] R. H. Liu, J. Bonanno, J. Yang, R. Lenigk, and P. Grodzinski, “Single-Use, Thermally Actuated Paraffin Valves for Microfluidic Applications”, Sensors and Actuators B, vol. 98, pp. 328–336, 2004.
[45] R. Zengerle, J. Ulrich, S. Kluge, M. Richter, and A. Richter, “A Bidirectional Silicon Micropump”, Sensors Actuators A, vol. 50, pp. 81–86, 1995.
[46] S. Santra, P. Holloway, and C. D. Batich, “Fabrication and Testing of A Magnetically Actuated Micropump”, Sensors Actuators B, vol. 87, pp. 358–64, 2002.
[47] R. L. Bardell, N. R. Sharma, F. K. Forster, M. A. Afromowitz, and R. J. Penney, “Designing High-Performance Micro-Pumps Based on No-Moving-Parts Valves”, Microelectromechanical Systems (MEMS) ASME, vol. 62, pp. 47-53, 1997.
[48] N. Tesla, "Valvular conduit", US Patent, US 1,329,599, Feb. 3, 1920.
[49] R. Liu, Q. Yu, and D. J. Beebe, “Fabrication and Characterization of Hydrogel-Based Microvalves”, Journal of Microelectromechanical Systems, vol. 11, pp. 45–53, 2002.
[50] D. T. Eddington and D. J. Beebe, “A Valved Responsive Hydrogel Microdispensing Device With Integrated Pressure Source”, Journal of Microelectromechanical Systems, vol. 13, no. 4, 2004.
[51] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography”, Science, vol. 288 , pp. 113-116, 2000.
[52] C. H. Wang and G. B. Lee, “Pneumatically Driven Peristaltic Micropumps Utilizing Serpentine-Shape Channels”, Journal of Micromechanics and Microengineering, vol. 16, pp. 341–348, 2006.
[53] M. A. Eddings and B. K. Gale, “A PDMS-Based Gas Permeation Pump for On-Chip Fluid Handling in Microfluidic Devices”, Journal of Micromechanics and Microengineering, vol. 16, pp. 2396–2402, 2006.
[54] J. W. Choi, K. W. Oh, J. H. Thomas, W. R. Heineman, H. B. Halsall, J. H. Nevin, A. J. Helmicki, H. Thurman Henderson, and C. H. Ahn, An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities, Lab on a Chip, vol. 2, pp. 27–30, 2002.
[55] M. Zimmermann, H. Schmid, P. Hunziker, and E. Delamarche, Capillary Pumps for Autonomous Capillary Systems, Lab on a Chip, vol. 7, pp. 119–125, 2007.
[56] A. W. Martinez, S. T. Phillips, B. J. Wiley, M. Gupta, and G. M. Whitesides, FLASH: A rapid method for prototyping paper-based microfluidic devices, Lab on a Chip, vol. 8, pp. 2146–2150, 2008.
[57] C. C. Hong, S. Murugesan, S. Kim, G. Beaucage, J. W. Choi, and C. H. Ahn, “A Functional On-Chip Pressure Generator Using Solid Chemical Propellant for Disposable Lab-On-A-Chip”, Lab on a Chip, vol. 3, pp. 281–286, 2003.
[58] C. C. Hong, J. W. Choi, and C. H. Ahn, “An On-Chip Air-Bursting Detonator for Driving Fluids on Disposable Lab-On-A-Chip Systems”, Journal of Micromechanics and Microengineering, vol. 17, pp. 410–417, 2007.
[59] K. Y. Weng, N. J. Chou, and J. W. Cheng, “Triggering Vacuum Capillaries for Pneumatic Pumping and Metering Liquids in Point-of-Care Immunoassays”, Lab on a Chip, vol. 8, pp. 1216–1219, 2008.
[60] S. McNamara and Y. B. Gianchandani, “On-Chip Vacuum Generated by a Micromachined Knudsen Pump”, Journal of Microelectromechanical Systems, vol. 14, pp. 741-746, 2005.
[61] H. Park, K. Koo, S. Lee, J. Ban, H. Jeong, and D. Cho, "A PMMA Micro-suction Tool for Capsular Endoscope Using a Solid Chemical Propellant ", Bio-Science and Bio-Technology, vol. 57, pp. 38–44, 2009.
[62] G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers, Optical Engineering”, vol. 40, pp.1024-1029, 2001.