研究生: |
何宗昇 |
---|---|
論文名稱: |
硼矽玻璃添加於銀膏中對束縛燒結應力的影響 Effects of glass additives on stress development during constrained sintering of Ag paste |
指導教授: | 簡朝和 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 30 |
中文關鍵詞: | 銀膏 、硼矽玻璃 、緻密化 、束縛燒結應力 、燒結驅動力 、黏滯流動 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的在探討銀膏中添加硼矽玻璃在束縛燒結條件下,對緻密化及燒結應力的影響。實驗上以非等溫燒結方式透過雷射系統量測,在硼矽玻璃軟化前(710℃)對銀的燒結為束縛物的角色,這使得起始燒結溫度隨玻璃添加量增加而延緩;但在硼矽玻璃軟化後對銀燒結體的緻密化是隨玻璃增加而趨於緻密,若從晶粒成長隨密度變化分析知道,緻密度的提升主要是由於硼矽玻璃軟化後黏滯流動的結果。
同樣藉由雷射系統量測,可得硼矽玻璃對銀在束縛燒結下所產生的平面應力是隨玻璃添加量增加而降低,在750℃時平面應力從純銀的1.5MPa降至含30vol%硼矽玻璃的0.4MPa。另外透過熱機械分析儀在週期性加壓的方式下可量得銀膏添加硼矽玻璃的單軸向黏度值,並推測其剪黏度及燒結驅動力。由剪黏度及燒結驅動力分析知,硼矽玻璃的軟化能有效地鬆弛燒結張應力的影響,使得燒結驅動力的作用能有機會大於束縛燒結張應力的影響,這將使得銀燒結體能在束縛燒結下達到緻密。
[1] J.H. Jean and C.R. Chang, “Camber Development during Cofiring Ag-Based Low-Dielectric-Constant Ceramic Package”, J. Mater. Res., 12 [10] 2743-2750 (1997).
[2] K.R. Mikeska and D.T. Schaefer, “Method for Reducing Shrinkage during Firing of Ceramic Bodies”, US Pat. No. 5, 454, 741, 1994.
[3] B. Geller, B. Thaler, A. Fathy, M.J. Liberatore, H.D. Chen, G. Ayers, V. Pendrick and V. Narayan, “LTCC-M : An Enable Technology for High Performance Multilayer RF Systems”, J. Microwave, 7, 64-72 (1999).
[4] J. Bang and G.Q. Lu, “Constrained-Film Sintering of a Borosilicate Glass: In-situ Measurement of Film Stress”, J. Am. Ceram. Soc., 78 [3] 812-815 (1995).
[5] T.J. Garino and H.K. Bowen, “Deposition and Sintering of Particle Films on a Rigid Substrate”, J. Am. Ceram. Soc., 70 [11] C315-317 (1987).
[6] T.J. Garino and H.K. Bowen, “Kinetics of Constrained-Film Sintering”, J. Am. Ceram. Soc., 73 [2] 251-257 (1990).
[7] G.W. Scherer and T. Garino, “Viscous Sintering on a Rigid Substrate”, J. Am. Ceram. Soc., 68 [4] 216-220 (1985).
[8] A. Jagota and C.Y. Hui, “Mechanics of Sintering Thin Films -Ⅰ. Formulation and Analytical Results”, Mech. Mater., 9, 107-119 (1990).
[9] A. Jagota and C.Y. Hui, “Mechanics of Sintering Thin Films -Ⅱ. Cracking due to Self-Stress”, Mech. Mater., 11, 221-234 (1991).
[10] R.K. Bordia and R. Raj, “Sintering Behavior of Ceramic Films Constrained By a Rigid Substrate”, J. Am. Ceram. Soc., 68 [6] 287-292 (1985).
[11] R.K. Bordia and A. Jagota, “Crack Growth and Damage in Constrained Sintering Films”, J. Am. Ceram. Soc., 76 [10] 2475-2485 (1985).
[12] T. Cheng and R. Raj, “Flaw Generation During Constrained Sintering of Metal-Glass Multilayer Films”, J. Am. Ceram. Soc., 72 [9] 1649-1655 (1989).
[13] Y.C. Lin and J.H. Jean, “Constrained Sintering of Silver Circuit Paste”, J. Am. Ceram. Soc., 87 [2] 187-191 (2004).
[14] M. Ohring, “The Material Science of Thin Films” (Academic Press, Inc., San Diego, CA, 1992), pp. 416-418.
[15] J. Choe, J.N. Calata and G.Q. Lu, “Constrained-Film Sintering of a Gold Paste”, J. Mater. Res., 4 [10] 986-994 (1995).
[16] R.M. German, “Sintering Theory and Practice”, (John Wiley & Sons, New York, 1996) pp. 226-231
[17] T. Cheng, ”Co-Sintering Behavior of Ceramic-Metal and Glass - Metal Multilayer Films : Modeling and Experiment”, Ph.D. Thesis, Cornell University, Ithaca, NY (1989).
[18] E.A. Branded, Smithells Metals Reference Books, 6thed. (Butterworth & Co. Ltd., Washington, DC, 1983).
[19] P.Z. Cai, D.J. Green and G.L. Messing, “Constrained Densification of Alumina/Zirconia Hybrid Laminates, Ⅱ:Viscoelastic Stress Computation”, J. Am. Ceram. Soc., 80 [8] 1940-1948 (1997).
[20] ASM Hnadbook, 1990, v.2, 10th, pp.1154-1158.
[21] R.K. Bordia and G.W. Scherer, “On Constrained Sintering -Ⅰ. Constitutive Model for a Sintering Body”, Acta Metal. 36 [9] 2393-2397 (1988).
[22] P.Z. Cai, G.L. Messing and D.L. Green, “Determination of the Mechanical Response of Sintering Compact by Cyclic Loading Dilatometry”, J. Am. Ceram. Soc., 80 [2] 445-452 (1997).
[23] 劉書豪,簡朝和,”銀膏的束縛燒結”,國立清華大學材料科學工程學系碩士論文(2002)。