研究生: |
廖一寰 Liao, Yi-Huan |
---|---|
論文名稱: |
半導體雷射遭受雙光擾動下之動態特性與其應用 Dynamical Characteristics and Their Applications of Semiconductor Lasers Subject to Dual-Beam Perturbations |
指導教授: |
林凡異
Lin, Fan-Yi |
口試委員: |
許晉瑋
Shi, Jin-Wei 黃勝廣 Hwang, Sheng-Kwang 黃衍介 Huang, Yen-Chieh 馮開明 Feng, Kai-Ming 林凡異 Lin, Fan-Yi |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 84 |
中文關鍵詞: | 半導體雷射 、非線性動態 、光注入 、光回饋 、光電微波 |
外文關鍵詞: | semiconductor laser, nonlinear dynamics, optical injection, optical feedback, photonic microwave |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是在研究半導體雷射遭受雙光擾動(包括雙光注入與同時光注入與光回饋)下的動態特性與其應用。半導體雷射在遭受一般單一光擾動時,其原來的共振腔震盪頻率(cavity resonance frequency)會因為頻率推移效應(frequency pushing effect)而被改變。根據此一頻率的改變量,雷射對於某一光擾動的影響可以被定量的分析。當半導體雷射遭受雙光擾動時,我們可以根據這些頻率的改變量來分析各個光擾動在整個系統內所造成的影響。
對於半導體雷射遭受雙光注入時,我們觀察到了不同的動態區域包括PP、PS、SP、SS、S'S'、S'L、LS'和LL。這些區域是根據原單光注入所產生的動態與特性頻率在第二道光注入時被保留(P)、被改變(S)或被抑制(S')而定義出來的。L這個符號則是表示雷射在單光注入時就已經被穩定鎖頻(stable locking)。為了瞭解這些動態區域與不同注入參數的關係,我們將不同動態區域和它們所對應的雷射動態畫在兩張動態地圖中分析。一張是以兩個光注入強度當變數,另一張則是以兩個光頻差當變數。對於不同動態區域間的轉換情形,我們可以藉由追蹤並比較單光注入與雙光注入下震盪頻率的改變而觀察到。此外,一種在雙光注入下特有的鎖頻態(frequency locking state)也第一次在實驗中被觀察到。這種鎖頻態是在當雙光以相反光頻差注入時,彼此的頻率推移效應剛好互相平衡所發生的結果。
對於半導體雷射同時遭受光注入與光回饋時,我們區分出了PP、PS、SP、
SS和LS'等動態區域。為了研究光注入與光回饋在被擾動的雷射中互相競爭的情
形,這些動態區域與其所對應的雷射動態同樣畫成是以光注入強度與光回饋強度為
變數的動態地圖。從動態地圖我們發現半導體雷射對於光回饋的擾動比光注入更為
敏感。此外,為了證明此一動態地圖的實際可用性,在本研究中我們深入探討不同動態區域與各種利用雙光擾動半導體雷射架構之應用的關係。其中包括了窄線寬光電微波訊號的產生、寬頻渾沌訊號的產生以及穩定雷射等應用。
Dynamical characteristics and their applications of the semiconductor lasers subject to dual-beam perturbations, including dual-beam optical injection (DOI) and optical
injection (OI) with optical feedback (OF), are investigated. Base on the shifts of the cavity resonance frequency causing by the OI and the OF, the effects of the perturbations to the lasers can be quantitatively analysed. The roles and influences from each of the perturbations in the dual-beam perturbation schemes are also discussed.
For the semiconductor lasers subject to DOI, dynamical scenarios including PP, PS, SP, SS, S'S', S'L, LS', and LL are found. These scenarios are defined and differentiated
by whether the dynamics and the characteristic frequencies originated from the single-beam injection scheme are being preserved (P), shifted (S), or suppressed (S') after both beams are simultaneously injected. The letter L is used if the slave laser is already injection-locked by one of the beams under the single-beam injection condition. The
mappings of these scenarios and their corresponding dynamical states are plotted in the injection strengths and detuning frequencies spaces, respectively. The transition routes among different scenarios are tracked by comparing the oscillation frequencies of the lasers subject to single-beam optical injection and DOI. Moreover, frequency-locking states are observed experimentally the first time in the DOI, which occur when the frequency pushing effects from the two injected beams with opposite detunings balance each other off.
For the semiconductor lasers subject to OI with OF, dynamical scenarios including PP, PS, SP, SS, and LS' are distinguished. To study the competition between the OI and the OF in the lasers, the mapping of these scenarios and their corresponding dynamical states are plotted in the parameter space of the injection and feedback strengths.
The mapping shows that the laser is more sensitive to the perturbation from the OF light than the OI light when adding both to the laser simultaneously. This mapping also serves as the guideline for choosing the appropriate operation conditions in various applications employing both the OI and the OF at the same time. In this study, the suitable feedback strengths to narrow the linewidths of photonic microwave signals generated by the OI are studied. The limitation of using OI in enhancing the bandwidths of the chaos states generated by the OF is discussed. Moreover, to suppress the unwanted dynamics due to the feedback, the optimal injection parameters of the OI are shown.
[1] I. Fischer, Y. Liu, and P. Davis, “Synchronization of chaotic semiconductor laserdynamics on subnanosecond time scales and its potential for chaos communication,”Phys. Rev. A, vol. 62, pp. 011801–1–4, 2000.
[2] Y. Liu, H. F. Chen, J. M. Liu, P. Davis, and T. Aida, “Communication usingsynchronization of optical-feedback-induced chaos in semiconductor lasers,” IEEETrans. Circuits Syst. I, vol. 48, no. 12, pp. 1484–1490, 2001.
[3] H. Mocker and P. E. Bjork, “High accuracy laser Doppler velocimeter using stablelong-wavelength semiconductor lasers,” Appl. Opt., vol. 28, pp. 4914–4919, 1989.
[4] R. Diaz, S. C. Chan, and J. M. Liu, “Lidar detection using a dual-frequency source,”Opt. Lett., vol. 31, pp. 3600–3602, 2006.
[5] C. H. Cheng, C. W. Lee, T. W. Lin, and F. Y. Lin, “Dual-frequency laser dopplervelocimeter for speckle noise reduction and coherence enhancement,” Opt. Express,vol. 20, no. 18, pp. 20255–20265, 2012.
[6] S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma,“Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,”IEEE Photon. Technol. Lett., vol. 16, no. 1, pp. 293–295, 2004.
[7] A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Numerical study ofwavelength-swept semiconductor ring lasers: the role of refractiveindex nonlinear-ities in semiconductor optical amplifiers and implications for biomedical imagingapplications,” Opt. Lett., vol. 31, no. 6, pp. 760–762, 2006.
[8] J. R. Tredicce, F. T. Arecchi, G. L. Lippi, and G. P. Puccioni, “Instabilities inlasers with an injected signal,” J. Opt. Soc. Am. B, vol. 2, no. 1, pp. 173–183, 1985.
[9] T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced byexternal optical injection in semiconductor lasers,” Quantum Semiclass., vol. Opt.9, pp. 765–784, 1997.
[10] S. Wieczoreka, T. B. Simpson, B. Krauskopf, and D. Lenstra, “Bifurcation transitionsin an optically injected diode laser: theory and experiment,” Opt. Commun.,vol. 215, pp. 125–134, 2003.
[11] S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexityof optically injected semiconductor lasers,” Phys. Rep., vol. 416, pp. 1–128,2005.
[12] I. Gatare, M. Sciamanna, M. Nizette, H. Thienpont, and K. Panajotov, “Mappingof two-polarization-mode dynamics in vertical-cavity surface-emitting lasers withoptical injection,” Phys. Rev. E, vol. 80, pp. 026218–1–13, 2009.
[13] W. Coomans, S. Beri, G. V. der Sande, L. Gelens, and J. Danckaert, “Opticalinjection in semiconductor ring lasers,” Phys. Rev. A, vol. 81, pp. 033802–1–7,2010.
[14] M. C. Pochet, N. A. Naderi, V. Kovanis, and L. F. Lester, “Modeling the dynamicresponse of an optically-injected nanostructure diode laser,” J. Quantun Electron.,vol. 47, no. 6, pp. 827–833, 2011.
[15] S. C. Chen, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwavetransmission using an optically injected semiconductor laser,” Opt. Express,vol. 15, no. 22, pp. 14921–14935, 2007.
[16] Y. S. Juan and F. Y. Lin, “Ultra broadband microwave frequency combs generatedby an optical pulse-injected semiconductor laser,” Opt. Express, vol. 17, no. 21,pp. 18596–18605, 2009.
[17] S. C. Chen, S. K. Hwang, and J. M. Liu, “Analysis of an optically injected semiconductorlaser for microwave generation,” IEEE J. Quantum Electron., vol. 46,no. 3, pp. 421–428, 2010.
[18] M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, “Tunable photonicoscillators using optically injected quantum-dash diode lasers,” IEEE Phtonic Technol.Lett., vol. 22, no. 11, pp. 763–765, 2010.
[19] X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductorlasers,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 5, pp. 1198–1211, 2011.
[20] Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signalsutilizing a dual-beam optically injected semiconductor lasers,” IEEE Photonics J.,vol. 3, no. 4, pp. 644–650, 2011.
[21] M. Pochet, T. Locke, and N. G. Usechak, “Generation and modulation of amillimeter-wave subcarrier on an optical frequency generated via optical injection,”IEEE Photonics J., vol. 4, no. 5, pp. 1881–1891, 2012.
[22] A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester,“Tunable microwave signal generator with an optically-injected 1310nm QD-DFBlaser,” Opt. Express, vol. 21, no. 9, pp. 10772–10778, 2013.
[23] A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunablemillimeter-wave and THz signals with an optically injected quantum dot distributedfeedback laser,” IEEE Photonics J., vol. 4, no. 5, pp. 1881–1891, 2013.
[24] J. S. Lawrence and D. M. Kane, “Injection locking suppression of coherence collapsein a diode laser with optical feedback,” Opt. Commun., vol. 167, pp. 273–282, 1999.
[25] T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadbandnoise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol.Lett., vol. 7, no. 7, pp. 709–711, 1995.
[26] J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, “Modulation bandwidth,noise, and stability of a semiconductor laser subject to strong injection locking,”IEEE Photon. Technol. Lett., vol. 9, no. 10, pp. 1325–1327, 1997.
[27] T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-lockedsemiconductor lasers,” IEEE Photon. Technol. Lett., vol. 9, no. 10, pp. 1322–1324,1997.
[28] A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidthenhancement in semiconductor lasers with strong light injection,” IEEE J.Quantum Electron., vol. 39, no. 10, pp. 1196–1204, 2003.
[29] Y. Takiguchi, K. Ohyagi, and J. Ohtsubo, “Bandwidth-enhanced chaos synchronizationin strongly injectionlocked semiconductor lasers with optical feedback,”Opt. Lett., vol. 28, no. 5, pp. 319–321, 2003.
[30] E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. C. Hasnain, and M. C. Wu,“Strong optical injection-locked semiconductor lasers demonstrating ¿ 100-GHz resonancefrequencies and 80-GHz intrinsic bandwidths,” Opt. Express, vol. 16, no. 9,pp. 6609–6618, 2008.
[31] E. K. Lau, H. K. Sung, and M. C. Wu, “Frequency response enhancement of opticalinjection-locked lasers,” J. Quantum Electron., vol. 44, no. 1, pp. 90–99, 2008.
[32] J. Mark, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with opticalfeedback: theory and experiment,” IEEE J. Quantum Electron., vol. 28, no. 1,pp. 93–108, 1992.
[33] I. Fischer, G. H. M. van Tartwijk, A. M. Levine, W. Elsasser, E. Gobel, andD. Lenstra, “Fast pulsing and chaotic itinerancy with a drift in the coherencecollapse of semiconductor lasers,” Phys. Rev. Lett., vol. 76, no. 2, pp. 220–223,1996.
[34] N. Kikuchi, Y. Liu, and J. Ohtsubo, “Chaos control and noise suppression inexternal-cavity semiconductor lasers,” IEEE J. Quantum Electron., vol. 33, no. 1,pp. 56–65, 1997.
[35] J. Ohtsubo, “Feedback induced instability and chaos in semiconductor lasers andtheir applications,” Phys. Rev., vol. 6, pp. 1–15, 1999.
[36] T. Heil, I. Fischer, W. Elsaber, B. Krauskopf, K. Green, and A. Gavrielides, “Delaydynamics of semiconductor lasers with short external cavities: Bifurcation scenariosand mechanisms,” Phys. Rev. E, vol. 67, pp. 0066214–1–11, 2003.
[37] S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wunsche,and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with activeoptical feedback,” Phys. Rev. E, vol. 29, pp. 016206–1–10, 2004.
[38] J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductorlasers with optical feedback,” IEEE J. Quantum Electron., vol. 38, no. 9, pp. 1141–1154, 2002.
[39] C. R. Mirasso, J. Mulet, and C. Masoller, “Chaos shift-keying encryption in chaoticexternal-cavity semiconductor lasers using a single-receiver scheme,” IEEE Photon.Technol. Lett., vol. 14, no. 4, pp. 456–458, 2002.
[40] J. M. Liu, H. F. Chen, and S. Tang, “Synchronized chaotic optical communicationsat high bit rates,” IEEE J. Quantum Electron., vol. 38, no. 9, pp. 1184–1196, 2002.
[41] O. Solgaard and K. Lau, “Optical feedback stabilization of the intensity oscillationsin ultrahigh-frequency passively modelocked monolithic quantum-well lasers,”IEEE Photon. Technol. Lett., vol. 5, no. 11, pp. 1264–1267, 1993.
[42] K. Merghem, R. Rosales, S. Azouigui, A. Akrout, A.Martinez, F. Lelarge, G. H.Duan, G. Aubin, and A. Ramdane, “Low noise performance of passively modelocked quantum-dash-based lasers under external optical feedback,” Appl. Phys.Lett., vol. 95, no. 13, pp. 131111–1–3, 2009.
[43] C. Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. Lester, “Microwave characterizationand stabilization of timing jitter in a quantum-dot passively mode-lockedlaser via external optical feedback,” IEEE J. Sel. Top. Quantum Electron., vol. 17,no. 5, pp. 1311–1317, 2012.
[44] M. Nizette and T. Erneux, “Stability of injection-locked CW-emitting externalcavitysemiconductor lasers,” IEEE J. Sel. Top. Quantum Electron., vol. 10, no. 5,p. 1101208, 2004.
[45] E. Sooudi, C. de Dios, J. G. McInerney, G. Huyet, F. Lelarge, K. Merghem, R. Rosales,A. Martinez, A. Ramdane, and S. P. Hegarty, “A novel scheme for two-levelstabilization of semiconductor mode-locked lasers using simultaneous optical injectionand optical feedback,” IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 4,p. 1101208, 2013.
[46] R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-um distributedfeedback laser,” J. Lightwave Technol., vol. LT-4, no. 11, pp. 1655–1661,1986.
[47] K. Peterman, “External optical feedback phenomena in semiconductor lasers,”IEEE J. Sel. Top. Quantum Electron., vol. 1, no. 2, pp. 480–489, 1995.
[48] Y. C. Chen, H. G. Winful, and J. M. Liu, “Subharmonic bifurcations and irregularpulsing behavior of modulated semiconductor lasers,” Appl. Phys. Lett., vol. 47,pp. 208–210, 1985.
[49] H. G. Winful, Y. C. Chen, and J. M. Liu, “Frequency locking, quasiperiodicity, andchaos in modulated selfpulsing semiconductor lasers,” Appl. Phys. Lett., vol. 48,pp. 616–618, 1986.
[50] G. P. Agrawal, “Effect of gain nonlinearities on period doubling and chaos in directlymodulated semiconductor lasers,” Appl. Phys. Lett., vol. 49, pp. 1013–1015, 1986.
[51] L. Chusseau, E. Hemery, and J. M. Lourtioz, “Period doubling in directly modulatedInGaAsP semiconductor lasers,” Appl. Phys. Lett., vol. 55, pp. 822–824,1989.
[52] H. F. Liu and W. F. Ngai, “Nonlinear dynamics of a directly modulated 1.55 umInGaAsP distributed feedback semiconductor laser,” IEEE J. Quantum Electron.,vol. 29, no. 6, pp. 1668–1675, 1993.
[53] S. Bennett, C. M. Snowden, and S. Iezekiel, “Nonlinear dynamics in directly modulatedmultiple-quantum-well laser diodes,” IEEE J. Quantum Electron., vol. 33,no. 11, pp. 2076–2083, 1997.
[54] R. S. Tucker, “Nonlinear dynamics in directly modulated multiple-quantum-welllaser diodes,” IEEE J. Lightwave Technol., vol. LT-3, pp. 1180–1192, 1985.
[55] K. Y. Lau, “Short-pulse and high-frequency signal generation in semiconductorlasers,” IEEE J. Lightwave Technol., vol. LT-7, pp. 400–419, 1989.
[56] S. K. Hwang, S. C. Chan, S. C. H. a, and C. Y. Li, “Photonic microwave generationand transmission using direct modulation of stably injection-locked semiconductorlasers,” Opt. Commun., vol. 284, pp. 3581–3589, 2011.
[57] G. Giacomelli and M. C. andF. T. Arecchi, “Instabilities in a semiconductor laserwith delayed optoelectronic feedback,” Opt. Commun., vol. 72, no. 1,2, pp. 97–101,1989.
[58] C. H. Lee and S. Y. Shin, “Self-pulsing, spectral bistability, and chaos in a semiconductorlaser diode with optoelectronic feedback,” Appl. Phys. Lett., vol. 62,pp. 922–924, 1992.
[59] E. V. Grigorvieva, H. Haken, and S. A. Kaschenko, “Theory of quasiperiodicityin model of lasers with delayed optoelectronic feedback,” Opt. Commun., vol. 165,pp. 279–292, 1999.
[60] S. Tang and J. M. Liu, “Chaotic pulsing and quasi-periodic route to chaos ina semiconductor laser with delayed opto-electronic feedback,” IEEE J. QuantumElectron., vol. 37, no. 3, pp. 329–336, 2001.
[61] S. Tang and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with delayednegative optoelectronic feedback,” IEEE J. Quantum Electron., vol. 39, no. 4,pp. 562–568, 2003.
[62] T. C. Damen and M. A. Duguay, “Optoelectronic regenerative pulser,” Electron.Lett., vol. 16, pp. 166–167, 1980.
[63] P. Paulus, R. Langenhorst, and D. Jager, “Stable pulsations of semiconductor lasersby optoelectronic feedback with avalanche photodiodes,” Electron. Lett., vol. 23,pp. 471–472, 1987.
[64] J. M. Liu, H. F. Chen, and S. Tang, “Optical-communication systems based onchaos in semiconductor lasers,” IEEE Trans. Circuits Syst. I, vol. 48, pp. 1475–1483, 2001.
[65] F. Y. Lin and M. C. Tsai, “Chaotic communication in radio-over-fiber transmissionbased on optoelectronic feedback semiconductor lasers,” Opt. Express, vol. 15, no. 2,pp. 302–311, 2007.
[66] J. Troger, L. Thevenaz, P. A. Nicati, and P. A. Robert, “Diode laser subject toexternal light injection from several lasers,” IEEE J. Lightwave Technol., vol. 17,no. 4, pp. 1184–1196, 1999.
[67] N. Al-Hosiny, I. D. Henning, and M. J. Adams, “Secondary locking regions in laserdiode subject to optical injection from two lasers,” Electron. Lett., vol. 42, no. 13,pp. 759–760, 2006.
[68] N. Al-Hosiny, I. D. Henning, and M. J. Adams, “Tailoring enhanced chaos in opticallyinjected semiconductor lasers,” Opt. Commun., vol. 269, pp. 166–173, 2007.
[69] W. Li, N. H. Zhu, L. X.Wang, J. H. Ke, S. F. Chen, X. Q. Oi, B. H. Zhang, andL. Xie, “Frequency-pushing effect in single-mode diode laser subject to externaldual-beam injection,” IEEE J. Quantum Electron., vol. 46, no. 5, pp. 796–803,2010.
[70] X. Q. Qi and J. M. Liu, “Dynamics scenarios of dual-beam optically injected semiconductorlasers,” IEEE J. Quantum Electron., vol. 47, no. 6, pp. 762–769, 2011.
[71] J. P. Zhuang and S. C. Chan, “Tunable photonics microwave generation using opticallyinjected semiconductor laser dynamics with optical feedback stabilization,”Opt. Lett., vol. 38, no. 3, pp. 344–346, 2013.
[72] T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidthsharpening via polarizationrotated feedback in optically injected semiconductor oscillators,”IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 4, p. 1500807, 2013.
[73] Y. Takiguchi, K. Ohyagi, and J. Ohtsubo, “Bandwidth-enhanced chaos synchronizationin strongly injection-locked semiconductor lasers with optical feedback,”Opt. Lett., vol. 28, no. 5, pp. 319–321, 2003.
[74] A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the bandwidth of the opticalchaotic signal generated by a semiconductor laser with optical feedback,” IEEEPhotonic Technol. Lett., vol. 20, no. 19, pp. 1633–1635, 2008.
[75] A. B. Wang, Y. C. Wang, and J. F. Wang, “Route to broadband chaos in a chaoticlaser diode subject to optical injection,” Opt. Lett., vol. 34, no. 8, pp. 1144–1146,2009.
[76] J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in asemiconductor laser,” IEEE J. Quantum Electron., vol. 30, no. 4, pp. 957–965,1994.
[77] T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulationcharacteristics in a semiconductor laser subject to strong optical injection,” IEEEJ. Quantum Electron., vol. 32, no. 8, pp. 1456–1468, 1996.
[78] S. C. Chan, “Analysis of an optically injected semiconductor laser for microwavegeneration,” IEEE J. Quantum Electron., vol. 46, no. 3, pp. 421–428, 2010.
[79] T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Perioddoublingroute to chaos in a semiconductor laser subject to optical injection,” Appl.Phys. Lett., vol. 64, pp. 3539–3541, 1994.
[80] J. Mork, J. Mark, and B. Tromborg, “Route to chaos and competition betweenrelaxation oscillations for a semiconductor laser with optical feedback,” Phys. Rev.Lett., vol. 65, no. 16, pp. 1999–2002, 1990.
[81] O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom,“30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at1.55 um wavelength,” Electron. Lett., vol. 33, no. 6, pp. 488–489, 1997.
[82] R. T. Ramos and A. J. Seeds, “Fast heterodyne optical phase-lock loop using doublequantum well laser diode,” Electron. Lett., vol. 28, no. 1, pp. 82–83, 1992.
[83] D. Wake, C. R. Lima, and P. A.Davies, “Optical generation of millimeter-wavesignals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEETrans. Microw. Theory Tech., vol. 43, no. 9, pp. 2270–2276, 1992.
[84] A. C. Bordonalli, B. Cai, A. J. Seeds, and P. J.Williamss, “Generation of microwavesignals by active mode locking in a gain bandwidth restricted laser structure,” IEEEPhoton. Technol. Lett, vol. 8, no. 1, pp. 151–153, 1996.
[85] X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEEJ. Quantum Electron., vol. 32, no. 7, pp. 1141–1149, 1996.
[86] X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. QuantumElectron., vol. 36, no. 1, pp. 79–84, 2000.
[87] F. Y. Lin and J. M. Liu, “Chaotic Lidar,” IEEE J. Sel. Top. Quantim Electron.,vol. 10, no. 5, pp. 991–997, 2004.
[88] W. T. Wu, Y. H. Liao, and F. Y. Lin, “Noise suppressions in synchronized chaoslidars,” Opt. Express, vol. 18, no. 25, pp. 26155–26162, 2010.
[89] X. Fu, S. C. Chan, Q. Liu, and K. K.-Y. Wong, “Broadband optical chaos forstimulated Brillouin scattering suppression in power over fiber,” Appl. Opt., vol. 50,pp. E92–E96, 2011.
[90] R. Vicente, C. R. Mirasso, and I. Fischer, “Simultaneous bidirectional messagetransmission in a chaos-based communication scheme,” Opt. Lett., vol. 32, no. 4,pp. 4632–4634, 2007.
[91] K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori,K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation withbandwidth-enhanced chaos in semiconductor lasers,” Opt. Express, vol. 18, no. 6,pp. 5512–5524, 2010.
[92] S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversionusing an optically injected semiconductor laser,” Opt. Lett., vol. 31, no. 15,pp. 2254–2256, 2006.
[93] S. K. Hwang, H. F. Chen, and C. Y. Lin, “All-optical frequency conversion usingnonlinear dynamics of semiconductor lasers,” Opt. Lett., vol. 34, no. 6, pp. 812–814,2009.
[94] Y. S. Juan and F. Y. Lin, “Demonstration of ultra-wideband (UWB) over fiberbased on optical pulse-injected semiconductor laser,” Opt. Express, vol. 18, no. 9,pp. 9664–9670, 2010.
[95] R. Diaz, S. C. Chan, and J. M. Liu, “Lidar detection using a dual-frequency source,”Opt. Lett., vol. 31, no. 24, pp. 3600–3602, 2006.
[96] C. H. Cheng, C. W. Lee, T. W. Lin, and F. Y. Lin, “Dual-frequency laser Dopplervelocimeter for speckle noise reduction and coherence enhancement,” Opt. Express,vol. 20, no. 18, pp. 20255–20265, 2012.
[97] F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injectedsemiconductor laser subject to optoelectronic feedback,” Opt. Commun.,vol. 221, pp. 173–180, 2003.
[98] F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective bandwidths of broadband chaoticsignals,” IEEE J. Quantum Electron., vol. 48, no. 8, pp. 1010–1014, 2011.
[99] Y. Liu and J. Ohtsubo, “Dynamics and chaos stabilization of semiconductor laserswith optical feedback from an interferometer,” IEEE J. Quantum Electron., vol. 33,no. 7, pp. 1163–1168, 1997.
[100] J. G.Wu, G. Q. Xia, and Z. M.Wu, “Suppression of time delay signatures of chaoticoutput in a semiconductor laser with double optical feedback,” Opt. Express, vol. 17,no. 22, pp. 20124–20133, 2009.
[101] J. G. Wu, G. Q. Xia, X. Tang, X. D. Lin, T. Deng, L. Fan, and Z. M. Wu, “Timedelay signature concealment of optical feedback induced chaos in an external cavitysemiconductor laser,” Opt. Express, vol. 18, no. 7, pp. 6661–6666, 2010.