簡易檢索 / 詳目顯示

研究生: 曾惠敏
Zeng Hui-min
論文名稱: 方陣 行-列 搜尋之最佳演算法
An Optimal Algorithm for Column–Row Searching on Square Matrix
指導教授: 游素珍
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2009
畢業學年度: 98
語文別: 中文
論文頁數: 45
中文關鍵詞: NP-hard動態規劃迫切時間
外文關鍵詞: NP-hard, dynamic programming, the urgent time
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 森林火災常帶來嚴重的損害。本論文模擬森林火災情境,設計出最佳的滅火排程,使火災的損失最少。
    我們將災區規劃為一n×n方陣,每次調派一架直昇機依「行向」或「列向」直飛噴灑滅火物,每次滅一行(或一列)需花費1個單位時間,每個區塊僅需執行一次,即能完成滅火任務;若未能在迫切時間aij內撲滅,將造成1個單位的損失。這是個計算複雜度為NP-hard的問題,我們設計了一個「中間分段」之動態規劃演算法來找出森林滅火問題的最佳解,並撰寫電腦程式透過計算機模擬計算,探討此演算法較一般窮舉法能降低更多演算次數。


    Forest fire often causes great damage. In order to diminish the loss by the fire, this paper simulates the situation of forest fire, and attempts to design optimal fire extinguishing task scheduling.
    We regard the disaster area as an n×n square matrix. A helicopter is arranged to sprinkle fire-extinguishing chemicals either through a line or a row. It takes one unit of time to deal with a line or a row. Each unit requires only one action. Each unit can be totally put out the fire. If we fail to put out the fire within the urgent time aij, we will lose a unit of damage. This belongs to be a strongly NP-hard problem. A dynamic programming algorithms segmenting from the middle of fire-extinguishment are presented, utilizing computerized programs to simulate the calculations. The improvement intensity of this algorithm performing can lessen more frequency for performing a Brute force attack.

    摘要…………………………………………………………………… I Abstract………………………………………………………………II 目錄……………………………………………………………………III 表目錄…………………………………………………………………V 圖目錄…………………………………………………………………VI 第一章 緒論………………………………………………………………1 1.1 研究動機與目的………………………………………………1 1.2 研究方向與方法………………………………………………2 1.3 論文架構………………………………………………………2 第二章 文獻探討…………………………………………………………3 2.1 旅行推銷員問題………………………………………………3 2.2 資料探勘………………………………………………………6 2.3 動態規劃………………………………………………………9 2.1.1 動態規劃演算法的基本思想與結構………………………9 2.1.2 動態規劃的適用條件………………………………………10 2.1.3 動態規劃的種類與解法……………………………………11 第三章 預備知識…………………………………………………………14 3.1 排程理論………………………………………………………14 3.1.1 排程問題的定義……………………………………………14 3.1.2 排程問題的分類與模型……………………………………17 3.1.3 排程問題的求解方法………………………………………19 3.2 演算法…………………………………………………………21 3.2.1 演算法的設計步驟…………………………………………21 3.2.2 演算法的表示方式…………………………………………22 3.2.3 演算法的複雜性……………………………………………23 第四章 主要研究結果……………………………………………………27 4.1 問題描述………………………………………………………27 4.2 建立森林滅火問題的數學規劃模式…………………………28 4.3 應用動態規劃求森林滅火問題之最佳解……………………28 4.3.1 中間分段之動態規劃演算法………………………………29 4.3.2 說明森林滅火問題適用動態規劃…………………………32 4.3.3 定義動態規劃函數…………………………………………34 4.4 演算次數分析…………………………………………………37 4.5 中間分段之動態規劃舉例……………………………………39 第五章 結論與進一步研究………………………………………………43 參考資料……………………………………………………………………44

    [1] 郭寶章(民 94)。森林的功能與保育。科學發展期刊,第388期,6-13。
    [2] 黃翰仁(民 92)。重要參數對森林火災影響研究。元智大學機械工程學系碩士論文。
    [3] 張獻仁(民 87)。森林火災防救實務問題之研究--以台灣省林務局為例。國立中興大學森林學系碩士論文。
    [4] Frederick S.Hiller and Gerald J.Lieberman(2006). Introduction to operations research.chapter 13.(潘昭賢、葉瑞徽 譯(2006)。作業研究。滄海書局,第十三章)
    [5] 吳泰熙、張欽智(1997)。以禁忌搜尋法則求解推銷員旅行問題。大葉學報,第六卷,第一期,87-99。
    [6] Knox. J.(1994). Tabu search performance on the symmetric TSP. Computers & Operations Research,21(8), 786-802.
    [7] H. Curt (1995). The Devil’s in the Detail:Techniques, Tools, and Applications for Database mining and Konwlegde Discovery-Part 1 . Intelligent Software Strategies, Vol. 6, no.9, pp.3.
    [8] 蔡淑燕(民 91)。運用多區間動態規劃於選題策略之研究。國立臺南大學資訊教育研究所碩士論文,台南市。
    [9] Pinedo, M.(1994). Scheduling Theory, Algorithms, and Systems. Prentice Hall, London, 1-32.
    [10] Peter B. and Sigrid K(1994). Complexity results for scheduling problems.
    http://www.mathematik.uni-osnabrueck.de/research/OR/class/。
    [11] Lageweg‚ B. J.‚ Lenstra‚ J. K.‚ Lawler‚ E. L.‚ and Rinnooy Kan‚ A. H. G (1982). Computer-Aided complexity classification of combinational problems. Communications of the ACM‚ Vol. 25, 817-822.
    [12] 蔡郁彬、胡繼陽、侯玉展(2008)。演算法概論。學貫行銷股份有限公司,台北,1-15。
    [13] 曾志鴻(民 92)。排序演算法之研究。大同大學應用數學研究所碩士論文。
    [14] 唐桓永、趙傳立(民 91)。排序引論。科學出版社,北京,234-239。
    [15] 江南波。問題的難與易―介紹NP完備的概念。數學傳播期刊,第九十三卷,第三期。
    [16] Manindra Agrawal, neeraj Kitin, and Nitin Saxena(2004). PRIMES is in P. Annals of Mathematics, Vol.160, no.2, 781-793.
    [17] B.J. Lageweg‚ E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan (1981): Computer aided complexity classification of deterministic scheduling problems, Report BM 138, Centre for Mathematics and Computer Science.
    [18] S. A. Cook(1971). The complexity of theorem proving procedures. Proceedings third Annual ACM Symposium on the Theory of Computing, 151-158.
    [19] Goodrich‚ Michael T.‚ Tamassia‚ Roberto(2001). Algorithm Design:Foundations Analysis and Internet Examples. John Wiley‚ New York‚ 592-642.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE