研究生: |
黃澤洋 Huang, Tse-Yang. |
---|---|
論文名稱: |
Pb-Se-Sn-Te 四元熱電材料系統相圖 Phase diagrams of thermoelectric Pb-Se-Sn-Te quaternary system |
指導教授: |
陳信文
Chen, Sinn-Wen |
口試委員: |
陳洋元
朱旭山 Aleš Kroupa |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 151 |
中文關鍵詞: | 相圖 、熱電材料 、等溫橫截面圖 |
外文關鍵詞: | Phasediagram, Thermoelectrics, isothermalsection |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱電元件能將廢熱回收,提高能源使用效率。Pb-Se-Sn-Te四元系統,包含許多具有熱電應用潛力的材料,具有熱電應用的重要性。本研究探討Pb-Se-Sn-Te四元系統的相圖,提供基礎材料知識,作為Pb-Se-Sn-Te四元系統相關材料開發的基礎。Pb-Se-Sn-Te的六個組成二元系統為Pb-Se、Pb-Sn、Pb-Te、Se-Sn、Se-Te與Sn-Te,四個組成三元系統為Pb-Se-Sn、Pb-Se-Te、Pb-Sn-Te與Se-Sn-Te。此六個二元系統的相圖,在文獻中已有相當多的探討,也皆有Calphad型式熱力學模型描述。Pb-Sn-Te與Se-Sn-Te二個組成三元系統,文獻中也有相關相圖的探討與Calphad型式的熱力學敘述。針對六個組成二元系統與Pb-Sn-Te與Se-Sn-Te二個組成三元系統的相圖,本研究將直接引用文獻的結果,不再重複進行探討。針對Pb-Se-Te 與 Pb-Se-Sn 二個欠缺相平衡資料的三元系統,本研究進行相圖實驗的測定與探討。在350oC與500oC的Pb-Se-Sn-Te四元系統中,穩定的二元相包含PbSe、Se2Sn、SeSn、PbTe 與 SnTe。PbSe與PbTe及PbTe與SnTe分別生成Pb(Se,Te)及(Pb,Sn)Te連續固溶體。其他二元相並未含有連續固溶體,但彼此間有較高的溶解度。Pb-Se-Te與Pb-Se-Sn二個三元系統在350oC與500oC皆沒有穩定的三元相。依據相圖實驗的結果、以及現有組成二元系統的相圖,本研究推定了Pb-Se-Te與Pb-Se-Sn二個三元系統在350oC與500oC的等溫橫截面圖。Pb-Se-Sn 三元系統在350oC與500oC,含有liquid(Se)+γ-SeSn+α-PbSe、liquid(Se)+γ-SeSn +Se2Sn 與 γ-SeSn+α- PbSe+liquid (Pb-Sn)等三個縛三角(tie-triangles)。而在 Pb-Se-Te三元系統,350oC 中含有PbSe+liquid+(Se-Te)一個縛三角;500oC未有縛三角。針對Pb-Se-Sn-Te四元系統,本研究探討了PbSe、PbTe、SeSn與SnTe在500oC的單相固溶體區間。本研究也使用Calphad的方法,以二元系統的熱力學參數,在未引入三元交互作用的參數下,直接進行二元與三元系統的相圖計算,並與實驗結果進行比較。
Thermoelectric devices can enhance energy usage efficiency by recovering waste heat and converting it into electric energy. Pb-Se-Sn-Te is a quaternary material system of high thermoelectric application interests. This study determines the phase diagrams of Pb-Se-Sn-Te quaternary system to provide fundamental information for the development of Pb-Se-Sn-Te-related thermoelectric materials. Pb-Se-Sn-Te quaternary system has six constituent binary systems, Pb-Se, Pb-Sn, Pb-Te, Se-Sn, Se-Te and Sn-Te and four constituent ternary systems, Pb-Se-Sn, Pb-Se-Te, Pb-Sn-Te and Se-Sn-Te. There are phase equilibria experimental measurements and Calphad-type thermodynamic descriptions of all the six constituent binary systems and the two constituent ternary systems, Pb-Sn-Te and Se-Sn-Te. Regarding these six binary systems and the two ternary systems, this study will assess and use the phase diagrams results in the literatures without repeating experimental measurements. Experimental measurements are carried out to determine the phase diagrams of Pb-Se-Te and Pb-Se-Sn systems which are lacking in the literatures. The stable binary compounds in the Pb-Se-Sn-Te quaternary system at 350oC and 500 oC are PbSe, Se2Sn, SeSn, PbTe and SnTe. Pb(Se,Te) and (Pb,Sn)Te are continuous solid solutions. The other binary phases do not form continuous solid solutions, but most of them have significant solubilities. There are no ternary compounds in the Pb-Se-Sn and Pb-Se-Te systems. Based on the experimental phase diagrams measurements and the phase diagrams of constituent binary systems, the Pb-Se-Sn and Pb-Sn-Te isothermal sections at 350oC and 500 oC are determined. The Pb-Se-Sn ternary system at 350oC and 500oC have the following tie-triangles, liquid(Se)+γ-SeSn+α-PbSe, liquid(Se)+γ-SeSn +Se2Sn, and γ-SeSn+α-PbSe+liquid(Pb-Sn). In the Pb-Se-Te ternary system at 350 oC, the tie-triangle is Pb(Se-Te) +liquid+(Se-Te) and there is no tie-triagle at 500 oC. The compositionally wide solid solution region in the Pb-Se-Sn-Te quaternary system composed of PbSe-PbTe-SeSn-SnTe is experimentally determined in this study. Besides experimental measurements, this study also calculates the phase diagrams of the binary and ternary systems using just the thermodynamic descriptions of the binary systems without introducing ternary interaction parameters.
1. 永續能源政策綱領https://www.ey.gov.tw/Page/9277F759E41CCD91/6f0faa1c-9406-48d0-97aa-78ccea4f3f02
2. L.L.N.L,Estimated U.S. Energy Consumption in 2018,(2018)
3. T. M. Tritt, Thermoelectric materials: principles, structure, properties, and applications, Encyclopedia of Materials: Science and Technology, (2002) 1-11.
4. Jing-Feng Li*, Wei-Shu Liu, Li-Dong Zhao, and Min Zhou"High-performance nanostructured thermoelectric materials",NPG Asia Mater. 2(4) (2010) 152–158.
5. G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials, Nature Materials", Vol. 7, pp. 105-114, (2008).
6. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, "New Directions for Low-Dimensional Thermoelectric Materials", Advanced Materials, Vol. 19(8), pp. 1043-1053, (2007).
7. T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, "Quantum Dot Superlattice Thermoelectric Materials and Devices", Science, Vol. 297(5590), pp. 2229-2232, (2002).
8. C. L. Chen, H. Wang, Y. Y. Chen, T. Day, and G. J. Snyder, "Thermoelectric properties of p-type polycrystalline SnSe doped with Ag", Journal of Materials Chemistry A, Vol. 2(29), pp. 11171-11176, (2014).
9. L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, "Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals", Nature, Vol. 508, pp. 373-377, (2014).
10. R. J. Korkosz, T. C. Chasapis, S. H. Lo, J. W. Doak, Y. J. Kim, C. I Wu, E. Hatzikraniotis, D. N. Seidman, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, "High ZT in p-Type (PbTe)1–2x(PbSe)x(PbS)x Thermoelectric Materials", Journal of the American Chemical Society, Vol. 136(8), pp. 3225-3237, (2014).
11. Y. Lee, S. H. Lo, C. Chen, H. Sun, D. Y. Chung, T. C. Chasapis, C. Uher, V. P. Dravid, and M. G. Kanatzidis, "Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide", Nature, Communications., Vol. 5:3640, pp. 11, (2013).
12. S. N. Girard, J. He, X. Zhou, D. Shoemaker, C. M. Jaworsk, C. Uher, V. P. Dravid, J. P. Heremans, M. G. Kanatzidis, "High Performance Na-doped PbTe–PbS Thermoelectric Materials: Electronic Density of States Modification and Shape-Controlled Nanostructures", Journal of the American Chemical Society, Vol. 133(41), pp. 16588-16597, (2011).
13. L. D. Zhao, X. Zhang, H. Wu, G. Tan, Y. Pei, Y. Xiao, C. Chang, D. Wu, H. Chi, L. Zheng, S. Gong, C. Uher, J. He, and M. G. Kanatzidis, "Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe", Journal of the American Chemical Society, Vol. 138(7), pp. 2366-2373, (2016).
14. Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen, and Zhifeng Ren, "High thermoelectric performance by resonant dopant indium in nanostructured SnTe", Proceedings of the National Academy of Sciences of the United States of America, Vol. 110(33), pp. 13261-13266, (2013).
15. H. J. Wu, W. J. Foo, S. W. Chen, and G. J. Snyder, "Ternary eutectic growth of nanostructured thermoelectric Ag-Pb-Te materials", Applied Physics Letters, Vol. 101(2), pp. 023107-1, (2012).
16. Y. Pei, A. F. May, and G. J. Snyder, "Self-Tuning the Carrier Concentration of PbTe/Ag2Te Composites with Excess Ag for High Thermoelectric Performance", Advance Energy Materials, Vol. 1, pp. 291-296, (2011).
17. Zhiting Tian, Sangyeop Lee, Gang Chen," Heat Transfer in Thermoelectric Materials and Devices", Journal of Heat Transfer, Vol. 135, pp.1-13,(2013).
18. Pandat: CompuTherm LLC, 437 S. Yellowstone Dr., Suite 217, Madison, WI,53719 USA
19. The SGTE Substance database, version 1997, SGTE Group, Grenoble, France, (1997).
20. Y. Liu, Z. Kang, G. Sheng, L. Zhang, J. Wang and Z. Long, "Phase Equilibria and Thermodynamic Basis for the Cd-Se and Pb-Se Binary Systems", Journal of Electronic Materials, Vol. 41(7), pp 1915–1923, (2012).
21. Shih-kang Lin, Chao-kuei Yeh, Wei Xie, Yu-chen Liu, and Masahiro Yoshimura, "Ab initio-aided CALPHAD thermodynamic modeling of the Sn-Pb binary system under current stressing", Sci. Rep. 3, 2731 (2013).
22. W. Gierlotka, J. Lapsa, and D. Jendrzejczyk-Handzlik, "Thermodynamic description of the Pb-Te system using ionic liquid model",Journal of Alloys and Compounds, Vol. 479, pp. 152-156, (2009).
23. R. C. Sharma and Y. A. Chang, "The Se-Sn (selenium-tin) system.", Journal of Phase Equilibria, Vol. 7(1), pp.68-72, (1986)
24. G. Ghosh, H. L. Lukas, and L. Delaey, "A thermodynamic assessment of the Se-Te system", CALPHAD, Vol. 12(3), pp. 295-299, (1988).
25. Yajun Liu, Dong Liang,and Lijun Zhang"Thermodynamic Descriptions for the Sn-Te and Pb-Sn-Te Systems",Journal of Electronic Materials, Vol. 39, No. 2,pp. 246-257,(2010).
26. Jiaxin Cui, Cuiping Guo, Lei Zou, Changrong Li, Zhenmin Du ⇑,"Experimental investigation and thermodynamic modeling of the Se–Sn–Te system",Journal of Alloys and Compounds 642,pp.153–165,(2015).
27. H. L. Lukas, J. Weiss and E. T. Henig, Calphad, vol. 6(3), p.229, (1982).
28. J. C. Lin, R. C. Sharma, and Y. A. Chang, Binary alloy phase diagrams, ASM International, Vol. 3, pp.1485, (1990).
29. J. C. Lin, K. C. Hsieh, R. C. Sharma, and Y. A. Chang, "The Pb-Te (lead-tellurium) system",Bulletin of Alloy Phase Diagrams, Vol. 10(4), pp. 340-347, (1989).
30. H. Gravemann, H. J. Wallbaum, "Zur Kenntnis des Dreistoffsystems Kupfer-Blei-Tellur", ZEITSCHRIFT FUR METALLKUNDE, Vol. 47, pp. 433-441, (1956).
31. M. Moniri, C. Petot, "Study and the Pb-Te System", Journal of Thermal Analysis and Calorimetry, Vol. 24, pp. 195-201, (1978).
32. Y. Feutelais, M. Majid, B. Legendre and S. G. Frics, "Phase diagram investigation and proposition of a thermodynamic evaluation of the tin-selenium system", Journal of phase equilibria, Vol. 17(1), pp. 40-49, (1996).
33. G. Ghosh, R. C. Sharma, D. T. Li and Y. A. Chang, "The Se-Te (selenium-Tellurium) system", Journal of phase equilibria, Vol. 15(2), pp. 213-224, (1994).
34. R. C. Sharma and Y. A. Chang, "The Sn-Te (Tin-Tellurium) system", Journal of Phase Equilibra, Vol. 17(1), pp. 72-80, (1986).
35. S. Dal Corso, B. Liautard, and J. C. Tedenac, "The Pb-Sn-Se system: Phase equilibria and reactions in the -SnSe-Se subternary ", Journal of Phase Equilibria, Vol. 16(4), pp 308-314, (1995).
36. Latypov Z.M., Savel’ev V.P., Aver’yanov I.S., and Ul’danov A.S., "The system PbSe-SnSe2", Inorganic Materials, Vol. 7(11), pp. 1865-1866, (1971).
37. V.T. Shtanov, V.P. Zlomanov, and A.V. Novoselova, "Physicochemical investigation of the system PbSe-SnSe2", Inorganic Materials, Vol. 11(2), pp. 301-303, (1975).
38. J. Steininger, "Thermodynamics and Calculation of the Liquidus-Solidus Gap in Homogeneous, Monotonic Alloy Systems", Journal of Applied Physics, Vol. 41, p. 2713, (1970).
39. A. Laugier, "Thermodynamics and phase diagram calculations in II-VI and IV-VI ternary systems using an associated solution model", Revue de Physique appliquée,Vol.8(3), pp. 259-270, (1973).
40. V.V. Krapukhin, I.A. Sokolov, I.Y. Tsveibak, N.V. Chubar', and E.B. Bankova, "Study of phase of Pb-PbTe-PbSe system", Russian Journal of Physical Chemistry, Vol. 58, p. 1447, (1984).
41. V. Leute, and H.J. Köller,"The Four Quasibinary Phase Diagrams of the Quasiternary System (Hg, Pb) (Se, Te)",Zeitschrift für Physikalische Chemie, Vol.149(2), pp. 213-227, (1986).
42. V.L. Kuznetsov, A.M. Gas'kov, and V.P. Zlomanov,"T-X-Y Projectionsof thePb-Se-TeSystem", Inorganic Materials, Vol. 23, pp. 804-808, (1987).
43. A.A. Volykhov, L.V. Yashina, and V.I. Shtanov, "Phase relations inpseudobinary systems of germanium, tin, and lead chalcogenides", Inorganic Materials, Vol.42, pp. 596-604, (2006).
44. M. Majid and B. Legendre, "Etude du systeme ternaire Se–Te–Sn", Journal of Thermal Analysis, Vol. 54, pp. 963-990, (1998).
45. C. Y, Chen, H. J. Wu and S. W. Chen, "Liquidus projection and phase equilibria isothermal section of Se-Sn-Te system", Journal of Alloys and Compounds, Vol. 547, pp. 100-106, (2013).
46. O. Madelung, U. Rössler, M. Schulz (ed.),'crystal structure, lattice parameters, thermal expansion',Springer-Verlag Berlin Heidelberg © (1998).