簡易檢索 / 詳目顯示

研究生: 林奕良
Yi-Liang Lin
論文名稱: 水相中銅與胺基酸錯合物之光分解產物研究:醛的定量與分析
Determination of Aldehyde from the Photolysis of Cu(II)/Amino Acid Complexes in Aqueous Solution
指導教授: 吳劍侯
Chien-Hou Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 81
中文關鍵詞: DNPH銅錯合物胺基酸量子產率
外文關鍵詞: aldehyde, DNPH, copper complex, amino acid, quantum yield
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用DNPH(2,4-Dinitrophenylhydrazine)衍生法搭配高效能液相層析法(High-Performance Liquid Chromatography,HPLC)來探討銅胺基酸錯合物在經由波長313 nm的照射下可能產生的醛,以及利用所得的數據推測其光反應機構。銅胺基酸錯合物在光照後會進行LMCT(ligand to metal charge transfer)反應,而胺基酸因此被氧化分解。實驗結果顯示,一價銅和醛的量子產率比(ΦCu(I) / Φaldehyde)約為3~6,不同胺基酸會有不同的比值。另外,隨著Cu(II)濃度增加,一價銅和醛的產率比有正比上升的趨勢,表示有反應會抑制醛的產生,且此反應速率與Cu(II)成一級反應,由以上兩個結果推測醛在反應中會被再氧化成酸。
    在實驗方法的建立方面。本研究發現DNPH會與Cu(II)進行氧化還原反應,為了不影響到分析的準確性,而提出一改善方法。此方法利用EDTA與重金屬的強錯合能力,改良傳統DNPH衍生法,使分析方法不受Cu(II)的影響,未來可以應用於其他重金屬方面。另外本研究也有針對DNPH會與Cu(II)的氧化還原反應做初步的探討,發現其反應速率為與DNPH和Cu(II)濃度成一級反應。


    The study was to calculate the quantum yields of aldehydes formed from photolysis of copper(II) – amino acid complexes in anaerobic aqueous solution under monochromatic radiation at 313 nm. 2,4-dinitrophenylhydrazine (DNPH) derivatization method combined with high-performance liquid chromatography (HPLC)-UV was applied and optimized. DNPH derivatization is a well-developed, highly sensitive method for determination of aldehyde but the reaction of DNPH with aldehydes was found to be suppressed by copper(II) in this study. Adding EDTA to chelate copper(II) could significantly reduce the inference of copper(II), and it was expected to have the same effects for other metal ion. Meanwhile, the reaction between DNPH and copper(II) is a redox reaction, and the kinetics follows the first reaction order of both aldehydes and DNPH.
    Regarding the photoreaction of copper complexes, the ligand to metal charge transfer (LMCT) was supposed to be responsible for the reduction of copper(II) to copper(I) following with the degradation of amino acid. Aldehydes could be parts of the photoproducts. The quantum yield ratios of copper(I) to aldehydes (ΦCu(I) / Φaldehyde) were around 3 to 6, which depends on the different amino acids as the ligands, such as Alanine, Valine, Leucine and Isoleucine. Meanwhile, the quantum yield ratios were found to have a positive correlation with the concentration of copper(II). A further oxidation of formed aldehydes to carboxyl acids is proposed to explain the trend of the quantum yield of aldehydes.

    目錄 中文摘要.........................................................................................................................I 英文摘要.......................................................................................................................II 謝辭..............................................................................................................................III 目錄..............................................................................................................................IV 圖目錄........................................................................................................................VII 表目錄..........................................................................................................................X 第一章 前言................................................................................................................1 1-1 簡介...............................................................................................................1 1-2 文獻回顧.......................................................................................................1 1-2-1 醛的測量方法.........................................................................................1 1-2-1-1 直接進樣法......................................................................................1 1-2-1-2 衍生法..............................................................................................2 1-2-1-3 醛的測量方法之結論......................................................................3 1-2-2 醛與DNPH.............................................................................................3 1-2-3 銅與胺基酸光化學反應........................................................................6 1-2-4 一般電子轉移的方法............................................................................8 1-2-5 反應模式假設........................................................................................8 1-3 研究目的及動機......................................................................................11 第二章 實驗方法......................................................................................................12 2-1 裝置................................................................................................................12 2-1-1 醛分析的HPLC – UV/VIS...................................................................12 2-1-2 光照系統...............................................................................................12 2-1-3 其他儀器...............................................................................................13 2-2 藥品.............................................................................................................13 2-2-1 DNPH衍生試劑...................................................................................13 2-2-2 醛標準品的配置...................................................................................14 2-2-3 HPLC移動相的配製............................................................................14 2-2-4 光照樣品...............................................................................................15 2-2-5 其他藥品...............................................................................................16 2-3 分析流程.....................................................................................................16 2-3-1 醛的分析流程.......................................................................................16 2-3-2 一價銅的分析流程...............................................................................16 2-3-3 光照流程...............................................................................................17 2-3-4 光強度的測量.......................................................................................17 2-3-5 數據處理...............................................................................................18 第三章 結果與討論..................................................................................................20 3-1 高效能液相層析儀及紫外可見光譜儀的最佳化條件.............................20 3-1-1 高效能液相層析儀的移動相梯度.......................................................20 3-1-2 紫外可見光譜儀的偵測波長...............................................................20 3-2 衍生條件最佳化.........................................................................................22 3-2-1 衍生時間...............................................................................................22 3-2-2 衍生時的pH值影響.............................................................................22 3-2-3 干擾物對衍生的影響...........................................................................23 3-2-3-1 銅濃度影響....................................................................................23 3-2-3-2 其他干擾........................................................................................25 3-2-4 衍生效率..............................................................................................27 3-3 檢量線、再現性、準確性和方法偵測極限..............................................27 3-4 吹除效應..................................................................................................28 3-5 改變條件(ligand濃度、Cu(II)濃度和pH)探討銅胺基酸錯合物的光反應性......................................................................................................30 3-5-1 pH值效應.............................................................................................35 3-5-2 配位基濃度效應..................................................................................35 3-5-3 Cu(II)濃度效應.....................................................................................35 3-6 銅胺基酸錯合物之光反應機構.................................................................36 第四章 結論..............................................................................................................41 參考文獻......................................................................................................................42 附錄1. DNPH與Cu(II)的反應機制........................................................................47 附錄2. 檢量線、再現性、準確性和方法偵測極限的數據......................................55 附錄3. 光照結果的數據..........................................................................................58 附錄4. 銅胺基酸錯合物的在Minteq中的結合常數.............................................74 圖目錄 圖1-1 DNPH的衍生反應.........................................................................................2 圖1-2 Benzyloxime 的衍生反應.............................................................................2 圖1-3 PFBHA 的衍生反應.....................................................................................3 圖1-4 Nash’s reaction...............................................................................................3 圖1-5 DNPH和Propanal的反應機制.....................................................................6 圖1-6 一般的電子轉移方式....................................................................................8 圖2-1 HPLC裝置圖...............................................................................................12 圖2-2 光照系統裝置圖..........................................................................................13 圖2-3 醛分析的HPLC-UV/VIS之移動相梯度....................................................15 圖2-4 測量一價銅的流程圖..................................................................................17 圖2-5 Cu(I)加Bathocuproine於484 nm之吸收峰................................................17 圖2-6 Alanine系統在pH =5.0 ~ pH = 7.0之間的各物種分佈的情形................17 圖2-7 測量Cu(I)及醛的流程圖.............................................................................15 圖3-1 層析圖(實線)及HPLC 的移動相梯度(虛線).........................................20 圖3-2 DNPH 及其衍生物UV 光譜圖.................................................................21 圖3-3 1 μM 各種醛([Acetaldehyde] = 0.1 μM)在pH = 1.8 的衍生時間......... 22 圖3-4 1 μM 醛在不同pH 的衍生效果................................................................23 圖3-5 不同濃度的Cu(II)對衍生效果的影響.......................................................24 圖3-6 在不同濃度的EDTA的影響......................................................................24 圖3-7 加入EDTA 對樣品的影響.........................................................................25 圖3-8 Phosphate buffer、NaCl、EDTA 和Alanine 對衍生效果的影響..............26 圖3-9 樣品pH 對衍生效果的影響.......................................................................26 圖3-10 衍生效率......................................................................................................27 圖3-11 頂空吹除對分析方法的影響......................................................................29 圖3-12 吹除對光照結果的影響..............................................................................29 圖3-13 Alanine系統所產生的醛.............................................................................31 圖3-14 Valine系統所產生的醛...............................................................................31 圖3-15 Leucine系統所產生的醛.............................................................................32 圖3-16 Isoleucine系統所產生的醛.........................................................................32 圖3-17 Serine系統所產生的醛...............................................................................33 圖3-18 Phenylalanine系統所產生的醛...................................................................33 圖3-19 Threonine系統所產生的醛.........................................................................34 圖3-20 Methionine系統所產生的醛.......................................................................34 圖3-21 Cu(I)、氨和醛的產率比...............................................................................38 圖3-22 Cu(II)-α-Amino acid 錯合物的光反應機構..............................................38 圖3-23 Cu(I)和醛的產率比與Cu(II)濃度的關係...................................................39 圖5-1 DNPH 隨反應時間慢慢減少.....................................................................47 圖5-2 [Cu(II)] 對DNPH 衰減速率的反應級數................................................50 圖5-3 [DNPH]對DNPH 衰減速率的反應級數.................................................50 圖5-4 [OH-]對DNPH 衰減速率的反應級數.....................................................51 圖6-1 Formaldehyde、Acetaldehyde 和Propanal 的檢量線和R2.......................55 圖6-2 Butanal、Pentanal 和Hexanal 的檢量線和R2...........................................56 圖6-3 Heptanal、Octanal 和Nonanal 的檢量線和R2...........................................56 圖6-4 Isobutanal、3-Methylbutanal 和2-Methylbutanal 的檢量線和R2.............57 圖6-5 DNPH 的檢量線.........................................................................................57 圖7-1 不同配位數的銅胺基酸錯合物之UV吸收圖譜.......................................58 圖7-2 銅胺基酸錯合物在不同pH下的物種分佈圖............................................59 圖7-3 Alnine系統在不同pH下所得的光照結果.................................................60 圖7-4 Valine系統在不同pH下所得的光照結果.................................................61 圖7-5 Leucine 系統在不同pH 下所得的光照結果............................................62 圖7-6 Isoleucine 系統在不同pH 下所得的光照結果........................................63 圖7-7 銅胺基酸錯合物在不同配位基濃度下的物種分佈圖..............................64 圖7-8 Alnine 系統在不同Alanine 濃度下所得的光照結果..............................65 圖7-9 Valine 系統在不同Valine 濃度下所得的光照結果................................66 圖7-10 Leucine 系統在不同Leucine 濃度下所得的光照結果............................67 圖7-11 Isoleucine 系統在不同Isoleucine 濃度下所得的光照結果.....................68 圖7-12 銅胺基酸錯合物在不同銅濃度下的物種分佈圖......................................69 圖7-13 Alnine 系統在不同銅濃度下所得的光照結果.........................................70 圖7-14 Valine 系統在不同銅濃度下所得的光照結果.........................................71 圖7-15 Leucine 系統在不同銅濃度下所得的光照結果.......................................72 圖7-16 Isoleucine 系統在不同銅濃度下所得的光照結果....................................73 表目錄 表1-1 醛的測量方法的整理....................................................................................4 表1-2 不同DNPH衍生物的熔點及顏色................................................................5 表1-3 Hydrazine和醛反應速率常數.......................................................................5 表1-4 銅錯合物照光反應的文獻整理....................................................................7 表2-1 藥品的基本物理性質..................................................................................14 表3-1 各種醛衍生物的最大吸收波長(λmax).......................................................21 表3-2 準確度、回收率和方法偵測極限................................................................28 表3-3 pH 對Cu(I) / Aldehdye 的影響.................................................................35 表3-4 Ligand 濃度對Cu(I) / Aldehdye 的影響...................................................36 表3-5 Copper 濃度對Cu(I) / Aldehdye 的影響...................................................36 表3-6 Cu(I)和Aldehyde 量子產率的比較............................................................37 表3-7 醛的水解常數..............................................................................................39 表5-1 [Cu(II)]對DNPH 衰減速率的次數(無除氧)........................................48 表5-2 [DNPH]對DNPH 衰減速率的次數(無除氧)..........................................48 表5-3 [Cu(II)]對DNPH 衰減速率的次數(除氧)............................................49 表5-4 [DNPH]對DNPH 衰減速率的次數(除氧)..............................................49 表5-5 [OH-]對DNPH 衰減速率的次數(無除氧).............................................49 表6-1 Isobutanal、3-Methylbutanal 和2-Methylbutanal 的精確度、回收率和方法偵測極限..................................................................................................55 表7-1 無機銅的莫爾吸收係數值..........................................................................58

    參考文獻
    Allen, C. F. H., The Identification of Carbonyl Compounds by Use of 2,4-Dinitrophenylhydrazine. J. Am. Chem. Soc. 1930, 52, 2995-2959.
    Allen, C. F. H. and J. H. Richmond, Some Limitations of 2, 4-Dinitrophenylhydrazine as a Reagent for Carbonyl Groups. J. Org. Chem. 1937, 2, 222-226.
    Anastasio, C.;B. C. Faust and J. M. Allen, Aqueous Phase Photochemical Formation of Hydrogen Peroxide in Authentic Cloud Waters. J. Geophys. Res. 1994, 99.
    Andrianirinaharivelo, S.;M. Boltea and G. Mailhot, Photodegradation of Organic Pollutants Induced by Complexation with Transition Metals(Fe3+ And Cu2+) Present in Natural Waters. Sol. Energy Mater. Solar Cells 1995, 38, 459-474.
    Behforouz, M.;J. L. Bolan and M. S. Flynt, 2,4-Dinitrophenylhydrazones: A Modified Method for the Preparation of These Derivatives and an Explanation of Previous Conflicting Results. J. Org. Chem. 1985, 50, 1186-1189.
    Bicking, M. K. L. and W. M. Cooke, Effect of pH on the Reaction of 2,4-Dinitrophenylhydrazine with Formaldehyde and Acetaldehyde. J. Chromatogr. 1988, 455, 310-315.
    Binding, N.;W. Müller and U. Witting, Syn/Anti Isomerization of 2, 4-Dinitrophenylhydrazones in the Determination of Airborne Unsymmetrical Aldehydes and Ketones Using 2, 4-Dinitrophenylhydrazine Derivation. Fresenius' J. Anal. Chem. 1996, 356, 315-319.
    Cancho, B.;F. Ventura and M. T. Galceran, Determination of Aldehydes in Drinking Water Using Pentafluorobenzylhydroxylamine Derivatization and Solid-phase Microextraction. J. Chromatogr. A 2001, 943, 1-13.
    Conant, J. B. and P. D. Bartlett, A Quantitative Study of Semicarbazone Formation. J. Am. Chem. Soc. 1932, 54, 2881-2899.
    Cordis, G. A.;D. K. Das and W. Riedel, High-Performance Liquid Chromatographic Peak Identification of 2, 4-Dinitrophenylhydrazine Derivatives of Lipid Peroxidation Aldehydes by Photodiode Array Detection. J. Chromatogr. A 1998, 798, 117-123.
    Cotsaris, E. and B. C. Nicholson, Low Level Determination of Formaldehyde in Water by High-Performance Liquid Chromatography. Analyst 1993, 118, 265-268.
    Custer, T. G.;S. Kato;V. M. Bierbaum;C. J. Howard and G. C. Morrison, Gas-Phase Kinetics and Mechanism of the Reactions of Protonated Hydrazine with Carbonyl Compounds. Gas-Phase Hydrazone Formation: Kinetics and Mechanism. J. Am. Chem. Soc. 2004, 126, 2744-2754.
    Das, S.;G. R. A. Johnson;N. B. Nazhat and R. Saadalla-Nazhat, Ligand Decomposition in the Photolysis of Copper (II)-Amino Acid Complexes in Aqueous Solution. J. Chem. Soc., Faraday Trans. 1 1984, 80, 2759-2766.
    Deng, C.;N. Li and X. Zhang, Development of Headspace Solid-Phase Microextraction with On-Fiber Derivatization for Determination of Hexanal and Heptanal In Human Blood. J. Chromatogr. B 2004, 813, 47-52.
    Eichelberger, J. W., Determination Of Carbonyl Compounds In Drinking Water By Dinitrophenylhydrazine Derivatization And High Performance Liquid Chromatography. EPA method 554 1992.
    Faust, B. C., Experimental Determination of Molar Absorptivities and Quantum Yields for Individual Complexes of a Labile Metal in Dilute Solution. Environ. Sci. Technol. 1996, 30, 1919-1922.
    Fracchia, M. F.;F. J. Schuette and P. K. Mueller, Method for Sampling and Determination of Organic Carbonyl Compounds in Automobile Exhaust. Environ. Sci. Technol. 1967, 1, 915-922.
    Fung, K. and D. Grosjean, Determination of Nanogram Amounts of Carbonyls as 2,4-Dinitrophenylhydrazones by High-Performance Liquid Chromatography. Anal. Chem. 1981, 52, 168-171.
    Gabrio, T. and A. Bertsch, Determination of Carbonyl Compounds In Pool Water with O-(2, 3, 4, 5, 6-Pentafluorobenzyl) Hydroxylamine Hydrochloride and Gas Chromatographic–Tandem Mass Spectrometric Analysis. J. Chromatogr. A 2004, 1046, 293–296.
    Glebov, E. M.;V. F. Plyusnina, et al., Photochemistry of Copper (II) Polyfluorocarboxylates and Copper (II) Acetate as Their Hydrocarbon Analogues. J. Photochem. Photobiol. A: Chem. 2000, 133, 177-183.
    Guthrie, J. P., Hydration of Carbonyl Compounds, an Analysis in Terms of Multidimensional Marcus Theory. J. Am. Chem. Soc. 2000, 122, 5529-5538.
    Hayaset, K. and R. G. Zepp, Photolysis of Copper(I I)-Amino Acid Complexes in Water. Environ. Sci. Technol. 1991, 25, 1273-1279.
    Ho, S. S. H. and J. Z. Yu, Determination of Airborne Carbonyls: Comparison of a Thermal Desorption/GC Method with the Standard DNPH/HPLC Method. Environ. Sci. Technol. 2004, 38, 862-870.
    Hodgson, A. T.;D. Beal and J. E. R. McIlvaine, Sources of Formaldehyde, Other Aldehydes and Terpenes in a New Manufactured House. Indoor Air 2002, 12, 235-242.
    Hoppilliard, Y.;G. Ohanessian and S. Bourcier, Fragmentation Mechanisms of Glycine-Cu+ in the Gas Phase. An Experimental and Theoretical Study. J. Phys. Chem. 2004, 108, 9687-9696.
    Hsu, C. S., Experimental Determination of Copper(I) Quantum Yields for Copper(II)-Amino Acid Complexes in Aqueous Solution. Master Thesis, Department of Atomic Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C., 2003
    Hug, G. L. and R. W. Fessenden, Identification of Radicals and Determination of Their Yields in the Radiolytic Oxidation of Glycine. Time-resolved ESR Methodology. J. Phys. Chem. A 2000, 104, 7021-7029.
    J. H. Fitzpatrick, J. and D. Hopgood, Metal Ion Catalyzed Decarboxylation. Kinetics and Mechanism of the Oxidative Decarboxylation of Copper(II) Complexes of Aminomalonic Acid in Aqueous Solution. Inorg. Chem. 1974, 13, 568-574.
    Johnson, G. R. A.;N. B. Nazhat and R. A. Saadalla-Nazhat, Reactions of the Hydroxyl Free Radical with Copper (II)-Amino-Acid Complexes in Aqueous Solution. J. Chem. Soc., Faraday Trans. 1 1989, 85, 7677-689.
    Jones, S. B.;C. M. Terry;T. E. Lister and D. C. Johnson, Determination of Submicromolar Concentrations of Formaldehyde by Liquid Chromatography. Anal. Chem. 1999, 71, 4030-4033.
    Karabatsos, G. J.;F. M. Vane;R. A. Taller and N. Hsi, Structural Studies by Nuclear Magnetic Resonance. VIII. Ring-Substituted Phenylhydrazones, Semicarbazones, and Thiosemicarbazones. J. Am. Chem. Soc. 1964, 86, 3351-3357.
    Kato, Y.;N. Kitamoto;Y. kawai and T. OSAWA, The Hydrogen Peroxide/Copper Ion System, but not Other Metal-Catalyzed Oxidation Systems, Produces Protein-Bound Dityrosine. Free Radic. Biol. Med. 2001, 31, 624?32.
    Kieber, R. J. and K. Mopper, Determination of Picomolar Concentrations of Carbonyl Compounds in Natural Waters, Including Seawater, By Liquid Chromatography. Environ. Sci. Technol. 1990, 24, 1477-1481.
    Kochi, J. K., Photolyses of Metal Compounds: Cupric Chloride in Organic Media. J. Am. Chem. Soc. 1962, 84, 2121-2127.
    Koivusalmi, E.;E. Haatainen and A. Root, Quantitative RP-HPLC Determination of Some Aldehydes and Hydroxyaldehydes as Their 2,4-Dinitrophenylhydrazone Derivatives. Anal. Chem. 1999, 71, 86-91.
    Langford, C. H.;M. Wingham and V. S. Sastri, Ligand Photooxidation in Copper(II) Complexes of Nitrilotriacetic Acid Implications for Natural Waters. Environ. Sci. Technol. 1973, 7, 820-822.
    Lappin, G. R. and L. C. Clark, Colorimetric Method for Determination of Traces of Carbonyl Compounds. Anal. Chem. 1951, 23, 541-542.
    Larsen, E. R., Spectrophotometric Determination of Copper in Fertilizer with Neocuproine. Anal. Chem. 1974, 46, 1131-1132.
    Lowe, D. C.;U. Schmidt;D. H. Ehhait;C. G. B. Frischkorn and H. W. Nurnberg, Determination of Formaldehyde in Clean Air. Environ. Sci. Technol. 1981, 15, 819-823.
    Magin, D. F., Gas Chromatography of Simple Monocarbonyls in Cigarette Whole Smoke as the Benzyzloxime Derivatives. J. Chromatogr. 1980, 202, 255-261.
    Mailhot, G.;S. L. Andrianirinaharivelo and M. Bolte, Photochemical Transformation of Iminodiacetic Acid Induced by Complexation with Copper (II) in Aqueous Solution. J. Photochem. Photobiol. A: Chem. 1995, 87, 31-36.
    Muralidharan, S. and G. Ferraudi, Photochemistry of Copper(II) Complexes with Macrocyclic Amine Ligands. Inorg. Chem. 1981, 20, 2306-2311.
    Nambara, T.;K. Kigasawa;T. Iwata and M. Ibuki, Studies on Steroids CIII. A New Type of Derivatives for Electron Capture-Gas Chromatography of Ketosteroids. J. Chromatogr. 1975, 114, 81-86.
    Nascimento, R. F.;J. C. Marques;B. S. L. Neto;D. D. Keukeleire and D. W. Franco, Qualitative and Quantitative High-Performance Liquid Chromatographic Analysis of Aldehydes in Brazilian Sugar Cane Spirits and Other Distilled Alcoholic Beverages. J. Chromatogr. A 1997, 782, 13-23.
    Nash, T., The Colorimetric Estimation of Formaldehyde by Means of the Hantzsch Reaction. Biochem. J. 1953, 55, 416-421.
    Natarajan, P. and G. Ferraudi, Photochemical Properties of Copper(II)-Amino Acid Complexes. Inorg. Chem. 1981, 20, 3708-3712.
    Oliva-Teles, M. T.;P. Paiga;C. M. Delerue-Matos and M. C. M. Alvim-Ferraz, Determination of Free Formaldehyde in Foundry Resins As Its 2, 4-Dinitrophenylhydrazone by Liquid Chromatography. Anal. Chim. Acta. 2002, 467, 97-103.
    Papa, L. J. and L. P. Turner, Chromatographic Determination of Carbonyl Compounds as Their 2, 4-Dinitrophenylhydrazones. II. High Pressure Liquid Chromatography. J. Chromatogr. Sci. 1972, 10, 747-750.
    Park, H.-M.;Y.-W. Eo;K.-S. Cha;Y.-M. Kim and K.-B. Lee, Determination of Free Acetaldehyde in Total Blood for Investigating the Effect of Aspartate on Metabolism of Alcohol in Mice. J. Chromatogr. B 1998, 719, 217-221.
    Rorabacher, D. B., Electron Transfer by Copper Centers. Chem. Rev. 2004, 104, 651-698.
    Sakuragawa, A.;T. Yoneno;K. Inoue and T. Okutani, Trace Analysis of Carbonyl Compounds by Liquid Chromatography-Mass Spectrometry after Collection as 2, 4-Dinitrophenylhydrazine Derivatives. J. Chromatogr. A 1999, 844, 403-408.
    Sun, L.;C.-H. Wu and B. C. Faust, Photochemical Redox Reactions of Inner-Sphere Copper(II)-Dicarboxylate Complexes: Effects of the Dicarboxylate Ligand Structure on Copper(I) Quantum Yields. J. Phys. Chem. A. 1998, 102, 8664-8672.
    Sýkora, J., Photochemistry of Copper Complexes and Their Environmental Aspects. Coord. Chem. Rev. 1997, 159, 95-108.
    Tutem, E.;R. Apak and F. Baykut, Spectrophotometric Determination of Trace Amounts Of Copper (I) and Reducing Agents with Neocuproine In The Presence Of Copper (II). Analyst 1991, 116, 89-94.
    U. S. Environmental Protection Agency, Environmental Monitoring System Laboratory, Determination of Carbonyl Compounds in Drinking Water by Dinitrophenylhydrazine Derivatization and High Performance Liquid Chromatography, EPA method 554, Cincinnati, Ohio, U. S. A., 1992
    Uchiyama, S.;M. Ando and S. Aoyagi, Isomerization of Aldehyde-2,4-Dinitrophenylhydrazone Derivatives and Validation of High-Performance Liquid Chromatographic Analysis. J. Chromatogr. A 2003, 996, 95-102.
    Uchiyama, S.;E. Matsushima;S. Aoyagi and M. Ando, Simultaneous Determination of C1-C4 Carboxylic Acids and Aldehydes Using 2,4-Dinitrophenylhydrazine-Impregnated Silica Gel and High-Performance Liquid Chromatography. Anal. Chem. 2004, 76, 5849-5854.
    Vogel, M.;A. Büldt and U. Karst, Hydrazine Reagents as Derivatizing Agents in Environmental Analysis - a Critical Review. Fresenius' J. Anal. Chem. 2000, 366, 781-791.
    Wang, P. Y., Determination of Ammonium Ion and Amines in the Photolysis of Cu(II)-Amino Acid Complexes in Aqueous Solution. Master Thesis, Department of Atomic Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C., 2004
    Wang, Q.;J. O’Reilly and J. Pawliszyn, Determination of Low-Molecular Mass Aldehydes by Automated Headspace Solid-Phase Microextraction with In-Fiber Derivatization. J. Chromatogr. A 2005, 1071, 147-154.
    Yang, C.-y.;Z.-W. Gu, et al., Identification of Modified Tryptophan Residues in Apolipoprotein B-100 Derived from Copper Ion-Oxidized Low-Density Lipoprotein. Biochem. 1999, 38, 15903-15908.
    Zegota, H., High-Performance Liquid Chromatography of Methanol Released From Pectins after Its Oxidation to Formaldehyde and Condensation with 2, 4-Dinitrophenylhydrazine. J. Chromatogr. A 1999, 863, 227-233.
    行政院環保署環境檢驗所, 水中甲醛、乙醛和丙醛檢測方法-液相層析儀/紫外光偵測器法. NIEA W782.50B 1997.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE