簡易檢索 / 詳目顯示

研究生: 陳政揚
論文名稱: 高功率脈衝磁控濺鍍製程中離子轟擊對氮化鈦薄膜織構及性質之影響
Effect of ion bombardment on texture and properties of TiN thin films deposited by High Power Impulse Magnetron Sputtering
指導教授: 黃嘉宏
喻冀平
口試委員: 李志偉
吳錦裕
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 96
中文關鍵詞: 高功率脈衝磁控濺射氮化鈦織構硬度殘餘應力電阻率
外文關鍵詞: HIPIMS, TiN, Texture, Hardness, Residual stress, Resistivity
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用高功率脈衝磁控濺射系統(HIPIMS)將奈米晶氮化鈦薄膜鍍著於矽(100)基材上。研究目的在於探討離子轟擊對氮化鈦薄膜織構、機械性質及鍍膜速率的影響。實驗設計以調控氮氣流量(N系列)及基材偏壓(B系列)來控制離子轟擊的強度。X光繞射結果顯示,氮化鈦薄膜均以(220)為優選方向,此結果與以往的文獻資料不同,主因為離子通道效應所致。(220)織構係數與離子轟擊的程度有緊密的關係,此係數會隨著氮氣流量增加而上升,也會隨著基材偏壓由負轉正而下降。薄膜的鍍膜速率可經由掃描式電子顯微鏡量測膜厚推得。因薄膜再濺射的關係,N系列的鍍膜速率會隨著離子轟擊增加而線性下降;而B系列鍍膜速率下降之原因則為,隨著基板偏壓由負轉正,使得較少金屬離子受到基材所吸引所造成的。此外,實驗結果亦顯示,在HIPIMS系統中,離子轟擊會顯著的影響氮化鈦薄膜的電阻率及殘餘應力。隨著離子轟擊程度降低,兩系列的薄膜電阻率都會下降,同樣的,B系列殘餘壓應力也會隨著基板偏壓由負轉正而降低。而薄膜硬度值波動很小(介於21.7至25.9 GPa之間),應該與晶界主導變形機制及薄膜堆積密度有關。


    Nano-crystalline TiN thin films were successfully deposited on (100) silicon substrate utilizing a high power impulse magnetron sputtering (HIPIMS) system. The purpose of this research was to investigate the effects of ion bombardment on the texture, mechanical properties, and the deposition rate of TiN thin films, where the extent of ion bombardment was controlled by varying nitrogen flow rates (N-series) and substrate bias (B-series). Unlike the texture reported in previous literatures, X-ray diffraction (XRD) revealed that most of the specimens possess (220) preferred orientation due to ion channeling effect. The (220) texture coefficient was closely related to the extent of ion bombardment, which may increase due to increasing nitrogen flow rate or decrease as the substrate bias switched from negative to positive. The film thickness was measured from cross-sectional SEM images where the deposition rate was obtained. Owing to ion re-sputtering, the deposition rate of N-series specimens decreased linearly with increasing ion bombardment. For the B-series specimens, the decrease of deposition rate is attributed to the fact that fewer metal ions were attracted to the substrate as the substrate bias switched from negative to positive. In addition, the results showed that the ion bombardment in HIPIMS significantly influenced the residual stress and electric resistivity of the TiN films. As the extent of ion bombardment decreased, the electric resistivity decreased in both series films and similarly the compressive residual stress of B series specimens decreased when the substrate bias switched from negative to positive. The small variation of hardness of the TiN films, ranging from 21.7 to 25.9 GPa, was correlated to the grain boundary-mediated deformation mechanisms and the packing density of the films.

    Contents 摘要 I Abstract II 致謝 III Contents V List of Figures VII List of Tables IX Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Conventional Magnetron Sputtering 3 2.2 High Power Impulse Magnetron Sputtering (HIPIMS) 4 2.2.1 Plasma Characteristics in HIPIMS 4 2.2.2 The Superior Properties of the Thin Films Deposited by HIPIMS 8 2.2.2.1 High Adhesion Film 8 2.2.2.2 Film Conformability 8 2.2.2.3 Film Densification 8 2.2.3 Deposition Rate 9 2.3 The Characteristics of TiN 12 2.3.1 Structure of TiN 12 2.3.2 Texture Evolution 15 2.3.2.1 Overall Energy Minimization 15 2.3.2.2 Competitive Grain Growth 16 2.3.2.3 Ion Channeling Effect 17 2.4 Residual Stress 21 2.5 Hardness 22 Chapter 3 Experimental Details 24 3.1 Specimen Preparation and Deposition Process 24 3.2 Characterization Methods for Structure and Compositions 29 3.2.1 X-ray Diffraction (XRD) and Glancing Incidence X-ray Diffraction (GIXRD) 29 3.2.2 Field-Emission Gun Scanning Electron Microscopy (FEG-SEM) 30 3.2.3 Secondary ion mass spectroscopy (SIMS) 30 3.2.4 X-ray Photoelectron Spectroscopy (XPS) 30 3.2.5 Rutherford Backscattering Spectroscopy (RBS) 31 3.3 Properties Measurements 32 3.3.1 Electrical Resistivity 32 3.3.2 Hardness 32 3.3.3 Residual Stress 33 3.3.4 Coloration 36 Chapter 4 Results 38 4.1 Pulsed Target Current Density and Substrate Current Density 42 4.2 Deposition Rate 44 4.3 Structure 46 4.3.1 XRD and GIXRD 46 4.3.2 SEM 51 4.3.3 SIMS 54 4.4 Compositions 56 4.4.1 XPS 56 4.4.2 RBS 61 4.5 Properties 64 4.5.1 Hardness 64 4.5.2 Residual Stress 66 4.5.3 Electrical Resistivity 68 4.5.4 Coloration 70 Chapter 5 Discussion 74 5.1 Deposition rate 74 5.2 Preferred Orientation 78 5.3 Residual Stress 81 5.4 Hardness 82 5.5 Electric Resistivity 83 5.6 Effect of ion bombardment 85 Chapter 6 Conclusions 87 Reference 88

    Reference
    [1] Ulf Helmersson, Martina Lattemann, Johan Bohlmark, Arutiun P. Ehiasarian, Jon Tomas Gudmundsson, Ionized physical vapor deposition (IPVD): A review of technology and applications, Thin Solid Films, 513 (2006) 1-24.
    [2] Cheng-Yang Su, TiN thin film produced by High Power Impluse Magnetron Sputtering (HiPIMS) : Effect of varying pulse target voltage and pulse off-time, Master Thesis, National Tsing Hua University, Taiwan, R.O.C., 2010.
    [3] M. Ohring, The Material Science of Thin Films, Academic Press, San Diego, 1992, p. 52.
    [4] S. M. Rossnagel, H. R. Kaufman, Langmuir probe characterization of magnetron operation, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 4 (1986) 1822-1825.
    [5] P. Sigurjonsson, J. T. Gudmundsson, Plasma parameters in a planar dc magnetron sputtering discharge of argon and krypton, Journal of Physics: Conference Series, 100 (2008) 062018.
    [6] T. E. Sheridan, M. J. Goeckner, J. Goree, Observation of two-temperature electrons in a sputtering magnetron plasma, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 9 (1991) 688-690.
    [7] C. Christou, Z. H. Barber, Ionization of sputtered material in a planar magnetron discharge, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 18 (2000) 2897-2907.
    [8] A. P. Ehiasarian, Y. A. Gonzalvo, T. D. Whitmore, Time-Resolved Ionisation Studies of the High Power Impulse Magnetron Discharge in Mixed Argon and Nitrogen Atmosphere, Plasma Process. Polym., 4 (2007) S309-S313.
    [9] S. Konstantinidis, A. Ricard, M. Ganciu, J. P. Dauchot, C. Ranea, M. Hecq, Measurement of ionic and neutral densities in amplified magnetron discharges by pulsed absorption spectroscopy, J. Appl. Phys., 95 (2004) 2900-2905.
    [10] I. Petrov, L. Hultman, J. E. Sundgren, J. E. Greene, Polycrystalline TiN films deposited by reactive bias magnetron sputtering- Effects of ion bombardment on resputtering rates, film composition, and microstructure, J. Vac. Sci. Technol. A-Vac. Surf. Films, 10 (1992) 265-272.
    [11] J. P. Zhao, X. Wang, Z. Y. Chen, S. Q. Yang, T. S. Shi, X. H. Liu, Overall energy model for preferred growth of TiN films during filtered arc deposition, J. Phys. D-Appl. Phys., 30 (1997) 5-12.
    [12] Y. M. Chen, G. P. Yu, J. H. Huang, Role of process parameters in the texture evolution of TiN films deposited by hollow cathode discharge ion plating, Surf. Coat. Technol., 141 (2001) 156-163.
    [13] Y. M. Chen, G. P. Yu, J. H. Huang, Characterizing the effects of multiprocess parameters on the preferred orientation of TiN coating using a combined index, Vacuum, 66 (2002) 19-25.
    [14] W. J. Chou, G. P. Yu, J. H. Huang, Bias effect of ion-plated zirconium nitride film on Si(100), Thin Solid Films, 405 (2002) 162-169.
    [15] I. Petrov, P. B. Barna, L. Hultman, J. E. Greene, Microstructural evolution during film growth, Journal of Vacuum Science & Technology A, 21 (2003) S117-S128.
    [16] H. M. Tung, J. H. Huang, D. G. Tsai, C. F. Ai, G. P. Yu, Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 500 (2009) 104-108.
    [17] J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. R-Rep., 37 (2002) 129-281.
    [18] Y. Lifshitz, S. R. Kasi, J. W. Rabalais, SUBPLANTATION MODEL FOR FILM GROWTH FROM HYPERTHERMAL SPECIES - APPLICATION TO DIAMOND, Phys. Rev. Lett., 62 (1989) 1290-1293.
    [19] R. Koch, The intrinsic stress of polycrystalline and epitaxial thin metal films, Journal of Physics: Condensed Matter, 6 (1994) 9519.
    [20] P. Hovsepian, Arch. Metall., 33 (1988) 4.
    [21] V. Kouznetsov, K. Macak, J. M. Schneider, U. Helmersson, I. Petrov, A novel pulsed magnetron sputter technique utilizing very high target power densities, Surf. Coat. Technol., 122 (1999) 290-293.
    [22] R. Machunze, A. P. Ehiasarian, F. D. Tichelaar, Gcam Janssen, Stress and texture in HIPIMS TiN thin films, Thin Solid Films, 518 (2009) 1561-1565.
    [23] A. P. Ehiasarian, A. Vetushka, Y. A. Gonzalvo, G. Safran, L. Szekely, P. B. Barna, Influence of high power impulse magnetron sputtering plasma ionization on the microstructure of TiN thin films, J. Appl. Phys., 109 (2011) 104314.
    [24] K. Sarakinos, J. Alami, S. Konstantinidis, High power pulsed magnetron sputtering: A review on scientific and engineering state of the art, Surf. Coat. Technol., 204 (2010) 1661-1684.
    [25] J. T. Gudmundsson, Ionized physical vapor deposition (IPVD): magnetron sputtering discharges, Journal of Physics: Conference Series, 100 (2008) 082002.
    [26] J. T. Gudmundsson, J. Alami, U. Helmersson, Evolution of the electron energy distribution and plasma parameters in a pulsed magnetron discharge, Appl. Phys. Lett., 78 (2001) 3427-3429.
    [27] J. T. Gudmundsson, J. Alami, U. Helmersson, Spatial and temporal behavior of the plasma parameters in a pulsed magnetron discharge, Surface and Coatings Technology, 161 (2002) 249-256.
    [28] J. Bohlmark, J. T. Gudmundsson, J. Alami, M. Latteman, U. Helmersson, Spatial electron density distribution in a high-power pulsed magnetron discharge, IEEE Trans. Plasma Sci., 33 (2005) 346-347.
    [29] J. Alami, K. Sarakinos, F. Uslu, M. Wuttig, On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering, J. Phys. D-Appl. Phys., 42 (2009) 015304.
    [30] J. Alami, K. Sarakinos, G. Mark, M. Wuttig, On the deposition rate in a high power pulsed magnetron sputtering discharge, Appl. Phys. Lett., 89 (2006) 154104.
    [31] J. Bohlmark, M. Lattemann, J. T. Gudmundsson, A. P. Ehiasarian, Y. A. Gonzalvo, N. Brenning, U. Helmersson, The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge, Thin Solid Films, 515 (2006) 1522-1526.
    [32] J. Andersson, A. P. Ehiasarian, A. Anders, Observation of Ti(4+) ions in a high power impulse magnetron sputtering plasma, Appl. Phys. Lett., 93 (2008) 071504.
    [33] P.R. Ward B.M. DeKoven, R.E. Weiss, D.J. Christie, R.A. Scholl, W.D. Sproul, F. Tomasel, A. Anders, Proceedings of the 46th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, San Francisco, CA, USA, May 3–8 2003, p. 158.
    [34] Lundin Daniel, Larsson Petter, Wallin Erik, Lattemann Martina, Brenning Nils, Helmersson Ulf, Cross-field ion transport during high power impulse magnetron sputtering, Plasma Sources Science and Technology, 17 (2008) 035021.
    [35] J. Vetter, T. Michler, H. Steuernagel, Hard coatings on thermochemically pretreated soft steels: application potential for ball valves, Surf. Coat. Technol., 111 (1999) 210-219.
    [36] A. P. Ehiasarian, J. G. Wen, I. Petrov, Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion, J. Appl. Phys., 101 (2007).
    [37] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, H. Deligianni, Damascene copper electroplating for chip interconnections, IBM J. Res. Dev., 42 (1998) 567-574.
    [38] P. Siemroth, T. Schulke, Copper metallization in microelectronics using filtered vacuum arc deposition - principles and technological development, Surf. Coat. Technol., 133 (2000) 106-113.
    [39] J. Alami, P. O. A. Persson, D. Music, J. T. Gudmundsson, J. Bohlmark, U. Helmersson, Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 23 (2005) 278-280.
    [40] A. P. Ehiasarian, P. E. Hovsepian, L. Hultman, U. Helmersson, Comparison of microstructure and mechanical properties of chromium nitride-based coatings deposited by high power impulse magnetron sputtering and by the combined steered cathodic arc/unbalanced magnetron technique, Thin Solid Films, 457 (2004) 270-277.
    [41] M. Samuelsson, D. Lundin, J. Jensen, M. A. Raadu, J. T. Gudmundsson, U. Helmersson, On the film density using high power impulse magnetron sputtering, Surf. Coat. Technol., 205 (2010) 591-596.
    [42] P.H.Mayrhofer J. Paulitsch, C.Mitterer,W.-D.Münz,M. Schenkel, Mechanical and Tribological Properties of CrN Coatings Deposited by a Simultaneous HIPIMS/UBM Sputtering Process, Society of Vacuum Coaters 50th Annual Technical Conference Proceedings, Louisville, KY, 2007, p. 150.
    [43] D. J. Christie, Target material pathways model for high power pulsed magnetron sputtering, Journal of Vacuum Science & Technology A, 23 (2005) 330.
    [44] Y. P. Purandare, A. P. Ehiasarian, P. Eh. Hovsepian, Structure and properties of ZrN coatings deposited by high power impulse magnetron sputtering technology, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 29 (2011) 011004.
    [45] Joanne L.Murray, Phase Diagram of Binary Titanium Alloys, ASM International, Ohio, 1987, p.178.
    [46] H. Ljungcrantz, M. Oden, L. Hultman, J. E. Greene, J. E. Sundgren, Nanoindentation studies of single-crystal (001)-, (011)-, and (111)-oriented TiN layers on MgO, J. Appl. Phys., 80 (1996) 6725-6733.
    [47] J. O. Kim, J. D. Achenbach, P. B. Mirkarimi, M. Shinn, S. A. Barnett, Elastic constants of single-crystal transition-metal nitride films measured by line-focus acoustic microscopy, J. Appl. Phys., 72 (1992) 1805-1811.
    [48] J. S. Chun, I. Petrov, J. E. Greene, Dense fully 111-textured TiN diffusion barriers: Enhanced lifetime through microstructure control during layer growth, J. Appl. Phys., 86 (1999) 3633-3641.
    [49] L.E. Toth, Transition Metal Carbides and Nitrides, Academic Press, New York, 1971.
    [50] William Alexander James F. Shackelford CRC Materials Science and Engineering Handbook, CRC Press, 2000, p50.
    [51] Y. Tanaka, E. Kim, J. Forster, Z. Xu, Properties of titanium nitride film deposited by ionized metal plasma source, J. Vac. Sci. Technol. B, 17 (1999) 416-422.
    [52] K. Yokota, K. Nakamura, T. Kasuya, K. Mukai, M. Ohnishi, Resistivities of titanium nitride films prepared onto silicon by an ion beam assisted deposition method, J. Phys. D-Appl. Phys., 37 (2004) 1095-1101.
    [53] J. E. Sundgren, Structure and properties of TiN coatings, Thin Solid Films, 128 (1985) 21-44.
    [54] U. C. Oh, J. H. Je, EFFECTS OF STRAIN-ENERGY ON THE PREFERRED ORIENTATION OF TIN THIN-FILMS, J. Appl. Phys., 74 (1993) 1692-1696.
    [55] J. H. Je, D. Y. Noh, H. K. Kim, K. S. Liang, Preferred orientation of TiN films studied by a real time synchrotron x-ray scattering, J. Appl. Phys., 81 (1997) 6126-6133.
    [56] W. J. Chou, G. P. Yu, J. H. Huang, Deposition of TiN thin films on Si(100) by HCD ion plating, Surf. Coat. Technol., 140 (2001) 206-214.
    [57] J. Pelleg, L. Z. Zevin, S. Lungo, N. Croitoru, REACTIVE-SPUTTER-DEPOSITED TIN FILMS ON GLASS SUBSTRATES, Thin Solid Films, 197 (1991) 117-128.
    [58] D. Gall, S. Kodambaka, M. A. Wall, I. Petrov, J. E. Greene, Pathways of atomistic processes on TiN(001) and (111) surfaces during film growth: an ab initio study, J. Appl. Phys., 93 (2003) 9086-9094.
    [59] J. E. Greene, J. E. Sundgren, L. Hultman, I. Petrov, D. B. Bergstrom, Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering, Appl. Phys. Lett., 67 (1995) 2928-2930.
    [60] L. Hultman, J. E. Sundgren, J. E. Greene, D. B. Bergstrom, I. Petrov, High‐flux low‐energy (similar-or-equal-to-20 eV) N+2 ion irradiation during TiN deposition by reactive magnetron sputtering: Effects on microstructure and preferred orientation, J. Appl. Phys., 78 (1995) 5395-5403.
    [61] R. Banerjee, R. Chandra, P. Ayyub, Influence of the sputtering gas on the preferred orientation of nanocrystalline titanium nitride thin films, Thin Solid Films, 405 (2002) 64-72.
    [62] Y. Kajikawa, S. Noda, H. Komiyama, Comprehensive perspective on the mechanism of preferred orientation in reactive-sputter-deposited nitrides, Journal of Vacuum Science & Technology A, 21 (2003) 1943-1954.
    [63] George H. Gilmer, Hanchen Huang, Tomas Diaz de la Rubia, Jacques Dalla Torre, Frieder Baumann, Lattice Monte Carlo models of thin film deposition, Thin Solid Films, 365 (2000) 189-200.
    [64] G. Abadias, Stress and preferred orientation in nitride-based PVD coatings, Surf. Coat. Technol., 202 (2008) 2223-2235.
    [65] W. Ensinger, Growth of thin films with preferential crystallographic orientation by ion bombardment during deposition, Surface and Coatings Technology, 65 (1994) 90-105.
    [66] C. H. Ma, J. H. Huang, H. D. Chen, Texture evolution of transition-metal nitride thin films by ion beam assisted deposition, Thin Solid Films, 446 (2004) 184-193.
    [67] Lock See Yu, James M. E. Harper, Jerome J. Cuomo, David A. Smith, Alignment of thin films by glancing angle ion bombardment during deposition, Appl. Phys. Lett., 47 (1985) 932-933.
    [68] L. S. Yu, J. M. E. Harper, J. J. Cuomo, D. A. Smith, CONTROL OF THIN-FILM ORIENTATION BY GLANCING ANGLE ION-BOMBARDMENT DURING GROWTH, J. Vac. Sci. Technol. A-Vac. Surf. Films, 4 (1986) 443-447.
    [69] R. Mark Bradley, James M. E. Harper, David A. Smith, Theory of thin-film orientation by ion bombardment during deposition, J. Appl. Phys., 60 (1986) 4160-4164.
    [70] R. M. Bradley, J. M. E. Harper, D. A. Smith, THEORY OF THIN-FILM ORIENTATION BY ION-BOMBARDMENT DURING DEPOSITION, J. Vac. Sci. Technol. A-Vac. Surf. Films, 5 (1987) 1792-1793.
    [71] L. Dong, D. J. Srolovitz, Mechanism of texture development in ion-beam-assisted deposition, Appl. Phys. Lett., 75 (1999) 584-586.
    [72] H. J. Shin, Y. J. Cho, J. Y. Won, H. J. Kang, C. H. Baeg, J. W. Hong, M. Y. Wey, Change of preferred orientation in TiN thin films grown by ultrahigh vacuum reactive ion beam assisted deposition, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 190 (2002) 807-812.
    [73] B. Rauschenbach, J. W. Gerlach, Texture development in titanium nitride films grown by low-energy ion assisted deposition, Cryst. Res. Technol., 35 (2000) 675-688.
    [74] J. H. Huang, K. W. Lau, G. P. Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surf. Coat. Technol., 191 (2005) 17.
    [75] S. Mahieu, P. Ghekiere, G. De Winter, S. Heirwegh, D. Depla, R. De Gryse, O. I. Lebedev, G. Van Tendeloo, Mechanism of preferential orientation in sputter deposited titanium nitride and yttria-stabilized zirconia layers, Journal of Crystal Growth, 279 (2005) 100-109.
    [76] I. Petrov, L. Hultman, U. Helmersson, J. E. Sundgren, J. E. Greene, Microstructure modification of TiN by ion bombardment during reactive sputter deposition, Thin Solid Films, 169 (1989) 299-314.
    [77] M. Kawamura, Y. Abe, H. Yanagisawa, K. Sasaki, Characterization of TiN films prepared by a conventional magnetron sputtering system: influence of nitrogen flow percentage and electrical properties, Thin Solid Films, 287 (1996) 115-119.
    [78] J. H. Huang, H. C. Yang, X. J. Guo, G. P. Yu, Effect of film thickness on the structure and properties of nanocrystalline ZrN thin films produced by ion plating, Surf. Coat. Technol., 195 (2005) 204-213.
    [79] J. H. Huang, K. J. Yu, P. Sit, G. P. Yu, Heat treatment of nanocrystalline TiN films deposited by unbalanced magnetron sputtering, Surf. Coat. Technol., 200 (2006) 4291-4299.
    [80] Jia-Hong Huang, Chi-Hsin Ho, Ge-Ping Yu, Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si(100) and stainless steel substrates, Materials Chemistry and Physics, 102 (2007) 31-38.
    [81] Yongqing Fu, Hejun Du, Chang Q. Sun, Interfacial structure, residual stress and adhesion of diamond coatings deposited on titanium, Thin Solid Films, 424 (2003) 107-114.
    [82] H. Oettel, R. Wiedemann, Residual stresses in PVD hard coatings, Surf. Coat. Technol., 76 (1995) 265-273.
    [83] H. Oettel, R. Wiedemann, S. Preissler, RESIDUAL-STRESSES IN NITRIDE HARD COATINGS PREPARED BY MAGNETRON SPUTTERING AND ARE EVAPORATION, Surf. Coat. Technol., 74-5 (1995) 273-278.
    [84] C. H. Hsueh, A. G. Evans, Residual Stresses in Meta/Ceramic Bonded Strips, Journal of the American Ceramic Society, 68 (1985) 241-248.
    [85] S. Guruvenket, G. Mohan Rao, Effect of ion bombardment and substrate orientation on structure and properties of titanium nitride films deposited by unbalanced magnetron sputtering, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 20 (2002) 678-682.
    [86] P. Patsalas, C. Charitidis, S. Logothetidis, The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films, Surf. Coat. Technol., 125 (2000) 335-340.
    [87] L. Karlsson, L. Hultman, J. E. Sundgren, Influence of residual stresses on the mechanical properties of TiCxN1-x (x=0, 0.15, 0.45) thin films deposited by arc evaporation, Thin Solid Films, 371 (2000) 167-177.
    [88] W. H. Tuan, J. C. Kuo, Contribution of residual stress to the strength of abrasive ground alumina, J. European Ceram. Soc., 19 (1999) 1593-1597.
    [89] W. J. Chou, G. P. Yu, J. H. Huang, Mechanical properties of TiN thin film coatings on 304 stainless steel substrates, Surf. Coat. Technol., 149 (2002) 7-13.
    [90] Z. Wokulski, Mechanical Properties of TiN Whiskers, Phys. Status Solidi A-Appl. Res., 120 (1990) 175-184.
    [91] C. H. Ma, J. H. Huang, Haydn Chen, Nanohardness of nanocrystalline TiN thin films, Surface and Coatings Technology, 200 (2006) 3868-3875.
    [92] I. A. Ovid'ko, Materials science - Deformation of nanostructures, Science, 295 (2002) 2386-2386.
    [93] M. Murayama, J. M. Howe, H. Hidaka, S. Takaki, Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe, Science, 295 (2002) 2433-2435.
    [94] P. Scherrer, Gött. Nachr., 2 (1918) 98.
    [95] M. J. Buerger L. V. Azaroff, The powder method in X-ray crystallography, McGraw-Hill, New York, 1958, p. 233.
    [96] M.P. Seah D. Briggs, Practical Surface Analysis: Auger and X-ray photoelectron spectroscopy, 2nd ed., John Wiley & Sons, 1990.
    [97] John Wolstenholme John F. Watts, An Introduction to Surface Analysis by XPS and AES, John Wiley & Sons Ltd., 2003, p64.
    [98] D. Gonbeau, C. Guimon, G. Pfisterguillouzo, A. Levasseur, G. Meunier, R. Dormoy, XPS study of thin films of titanium oxysulfides, Surf. Sci., 254 (1991) 81-89.
    [99] N. C. Saha, H. G. Tompkins, Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study, J. Appl. Phys., 72 (1992) 3072-3079.
    [100] http://webbook.nist.gov/chemistry.
    [101] C. N. Sayers, N. R. Armstrong, X-ray photoelectron spectroscopy of TiO2 and other titanate electrodes and various standard titanium oxide materials: surface compositional changes of the TiO2 electrode during photoelectrolysis, Surf. Sci., 77 (1978) 301-320.
    [102] L. Wicikowski, B. Kusz, L. Murawski, K. Szaniawska, B. Susla, AFM and XPS study of nitrided TiO2 and SiO2-TiO2 sol-gel derived films, Vacuum, 54 (1999) 221-225.
    [103] J. Pouilleau, D. Devilliers, F. Garrido, S. DurandVidal, Structure and composition of passive titanium oxide films, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 47 (1997) 235-243.
    [104] http://www.cem.msu.edu/~cem924sg/XPSASFs.html.
    [105] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Corrosion behavior of TiN-coated 304 stainless steel, Corrosion Science, 43 (2001) 2023-2035.
    [106] W. C. Oliver, G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564-1583.
    [107] G. G. Stoney, The tension of metallic films deposited by electrolysis, Proc. R. soc. Lond. Ser. A-Contain. Pap. Math. Phys. Character, 82 (1909) 172-175.
    [108] CIE, Colorimetry, Tech. Rept., 15, Bureau Central de la CIE, 1971, p. 1.
    [109] CIE, Recommendations on uniform color spaces, color difference equation and psychometric terms, Tech. Rept., Supplement No. 2 to CIE publication No. 15, Bureau Central de la CIE, 1978, p.1. .
    [110] ASTM, Symposium on Color, American Society for Testing Materials, Philadelphia, 1941, p3.
    [111] Alfred Grill, Cold Plasma in materials Fabrication, IEEE PRESS, 1994, p.52.
    [112] JCPDS PDF#650970.
    [113] M. Matsuoka, S. Isotani, J. C. R. Mittani, J. F. D. Chubaci, K. Ogata, N. Kuratani, Effects of arrival rate and gas pressure on the chemical bonding and composition in titanium nitride films prepared on Si(100) substrates by ion beam and vapor deposition, Journal of Vacuum Science & Technology A, 23 (2005) 137-141.
    [114] S. Niyomsoan, W. Grant, D. L. Olson, B. Mishra, Variation of color in titanium and zirconium nitride decorative thin films, Thin Solid Films, 415 (2002) 187-194.
    [115] R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A, 32 (1976) 751.
    [116] J. C. Slater, Atomic Radii in Crystals, The Journal of Chemical Physics, 41 (1964) 3199.
    [117] http://www.webelements.com/nitrogen/atom_sizes.html.
    [118] Pekka Pyykkö, Sebastian Riedel, Michael Patzschke, Triple-Bond Covalent Radii, Chemistry – A European Journal, 11 (2005) 3511.
    [119] W. D. Sproul, P. J. Rudnik, M. E. Graham, The effect of N2 partial pressure, deposition rate and substrate bias potential on the hardness and texture of reactively sputtered TiN coatings, Surface and Coatings Technology, 39–40, Part 1 (1989) 355-363.
    [120] J. D. Eshelby, F. C. Frank, F. R. N. Nabarro, The Equilibrium of Linear Arrays of Dislocations, Philosophical Magazine, 42 (1951) 351-364.
    [121] J. Schiotz, K. W. Jacobsen, A maximum in the strength of nanocrystalline copper, Science, 301 (2003) 1357-1359.
    [122] P. Klimanek, V. Klemm, A. E. Romanov, M. Seefeldt, Disclinations in Plastically Deformed Metallic Materials, Advanced Engineering Materials, 3 (2001) 877-884.
    [123] J.E. Sundgren, B.O. Johansson, A. Rockett, S.A. Barnett, J.E.Greene, in: W.D. Sproul, J.E. Greene, J.A. Thornton (Eds.), Physics and Chemistry of Protective Coatings, American Institute of Physics, MA, 1986.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE