研究生: |
王若琳 Wang, Ruo-Lin |
---|---|
論文名稱: |
以人機互動設計的觀點讓駕駛人對自動駕駛建立適當的信任:以駕駛權轉換過程為例 Building Appropriate Trust towards Autonomous Vehicles from the Perspective of Human-Machine Interaction Design: The Process of Take-over as an Example |
指導教授: |
盧俊銘
Lu, Jun-Ming |
口試委員: |
黃瀅瑛
Huang, Ying-Yin 陳柏全 Chen, Bo-Chiuan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2020 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 174 |
中文關鍵詞: | 自駕車駕駛行為 、提醒時間點 、駕駛模擬 、完全沉浸式虛擬實境 |
外文關鍵詞: | self-driving behavior of autonomous vehicles, timing of reminder, driving simulation, fully-immersive virtual reality |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著自動駕駛技術的進步,高度自動化駕駛的汽車很可能在未來十年內進入市場,也被預期會產生許多正向的效果,例如提昇道路安全和減少燃料消耗;然而,自駕車必須被社會大眾廣泛接受才能真正發揮這些效益。影響使用者對於自動駕駛汽車及其技術的接受因素包含駕駛人個人差異、系統可靠性及駕駛人對系統的信任,其中信任是影響大眾對此新技術之使用意願的前提。過去研究建議於人機互動設計中加入擬人化特徵以及提供適當的回饋可提高信任,因此本研究將針對自動駕駛汽車之駕駛權交遞的過程,以上述兩種方案為基礎,探討如何改善人機互動設計,進而讓駕駛人對自動駕駛汽車產生適當的信任;然而目前市場上僅有少數能實際上路且擁有自動駕駛系統的車輛,故本研究利用Unity 3D模擬行駛於平面市區道路的情境,藉由沉浸式虛擬實境模擬使用者與自動駕駛汽車的互動。
本研究共招募28位(男性22位、女性6位;內控性格者8位、外控性格者20位)年齡介於20至30歲間、雙眼裸視視力0.8以上或戴隱形眼鏡矯正後視力0.8以上、持有汽車駕照、具兩年以上駕駛經驗且過去半年內每週至少駕駛一次之參與者,並應用駕駛憤怒量表初步將可能過於保守或冒險之駕駛人排除。由於駕駛權的交遞過程包含前段之「自動駕駛」和後段之「駕駛人接手駕駛」,因此分為兩個實驗:第一部分欲探討有助於建立最適信任程度的擬人化自動駕駛行為,第二部分則整合第一部分所發現的最佳自動駕駛行為,針對駕駛權交遞之過程探討有助於建立最適信任程度的駕駛權接手提醒時間點。第一部分實驗中,研究參與者必須以隨機順序體驗四種自動駕駛行為(激進、保守、混合、重現駕駛人自身行為),並於每個實驗情境結束後填寫評估自覺有用性、自覺易用性、使用意圖、信任和不信任等的量表,藉由主觀感受比較其間的差異,以找出最有助於駕駛人對自駕車建立信任的駕駛行為;第二部分實驗中,研究參與者會先體驗自動駕駛,此期間於儀表板及方向盤右側播放影片讓參與者分心,但不強制要求參與者全程專注觀看,然後隨機在不同時間點(自駕系統自行運作極限前6.4秒、7.6秒、8.8秒、10.0秒)的情境下以視、聽覺提醒接手駕駛權,接手後需透過駕駛模擬器完成轉彎、避開道路封閉路段並停車的駕駛任務,於每個實驗情境結束後填寫評估自覺有用性、自覺易用性、使用意圖、信任和不信任等的量表以及情境察覺評分技術量表(SART),並結合駕駛權接手駕駛權的反應時間、任務成敗(包含是否確實打方向燈以及是否在不發生碰撞的情況下轉彎、避開道路封閉路段)兩項客觀績效指標,以評估駕駛人對自駕車的信任。
整體而言,本研究發現自駕車的人機互動設計確實為影響駕駛人對自駕車信任與使用與否的關鍵因素,因此自駕系統的自動駕駛行為之設定宜排除「激進型」自動駕駛行為,並針對駕駛人的「車速」、「車速變化」、「與前車車距」、「在路口前的加減速的距離」、「打方向燈的時機」、「轉彎的順暢與穩定度」等六種駕駛行為特徵配合駕駛人的駕駛風格,而系統極限前8.8秒是駕駛人較信任且駕駛績效較佳的駕駛權接手提醒時間點,基於安全性的考量,設計時宜排除系統極限前6.4秒的提醒時間點。此外,針對自動駕駛行為設計的評估可忽略駕駛性格和性別的影響,但應考量駕駛人的個別習慣差異,而針對駕駛權接手提醒時間點設定的評估,則需考量駕駛性別的影響,以協助提昇駕駛人對自駕車的信任。
While the autonomous vehicle technology progresses, highly automated vehicles are likely to enter the market within the next decade. There are many positive impacts, such as enhancing road safety and reducing fuel consumption. However, these effects can only arise if autonomous vehicles are accepted by the society. The acceptance of autonomous vehicles can be affected by the individual differences among drivers, system reliability, and drivers’ trust towards the system. Trust towards autonomous vehicles are the premises in the process of acceptance formation. In order to enhance trust, the implementation of anthropomorphic features has been suggested, as well as providing proper feedback in human-machine interaction (HMI). Therefore, this study focuses on the take-over process and explores how to improve the MI design to help users build appropriate trust towards autonomous vehicles. However, there are only few highly autonomous vehicles on the market. So, the immersive virtual reality system was used with Unity 3D to simulate driving scenarios.
28 participants (22 males, 6 females; 8 internal locus of control, 20 external locus of control) that are between the age of 20 and 35, holding the driver’s licenses and with over 2 years of driving experience were recruited. Besides, those who are too conservative or too risky were excluded by using the Driving Anger Scale. Since the process of take-over consists of “autonomous driving” and “the driver taking over the control,” the experiment is divided into two parts. The first part is to explore what kind of self-driving behavior can help the driver to build the appropriate trust. The second part will integrate the best driving behavior identified in the first experiment to find out the best timing of take-over request for drivers to build the appropriate trust. In the first experiment, the participant was asked to experience four self-driving behaviors (aggressive, conservative, hybrid, driver-like). After completion of each experimental scenario, the participant completed a series of scales to assess perceived usefulness, perceived ease of use, intention to use autonomous vehicles, trust and distrust, in order to find out the self-driving behavior that is most helpful for the driver to build trust towards autonomous vehicles. In the second part of the experiment, each participant had to first experience the autonomous driving mode with the best behavior identified in the first experiment. A video clip was played in-car to distract the driver, but the participant was not forced to watch it with full attention all the time. Furthermore, the participant was asked to take over the control and complete a driving task (turning to avoid the front vehicle and road closure) by using the driving simulator at different timing of reminder (6.4, 7.6, 8.8, 10.0 seconds before the system limit). The participant was asked to fill in the same scales as in the first experiment and the situation awareness rating technique (SART) scale after each experimental scenario. Combining the results of subjective indicators and two objective performance indicators (reaction time and success rate of the manual driving task), the driver's trust toward autonomous vehicles were evaluated.
In general, the HMI design of autonomous vehicles was found to be a key factor that affects the driver’s trust and intention of use towards autonomous vehicles. Therefore, “aggressive” self-driving behavior should be excluded. Besides, the seld-driving behavior should be set to match the driving style of the driver in terms of "speed," "speed change," "distance from the vehicle ahead," "distance to facilitae acceleration/deceleration at the intersection," "timing of turning on the turn signal," and "smoothness and stability of turning." Drivers tend to have a higher level of trust towards the reminder given 8.8 seconds prior to the system limit, which also contributes to the better driving performance. Based on safety considerations, the reminder given 6.4 seconds prior to the system limit should be excluded. In addition, when conducting the evaluation of self-driving behavior design, the influence of the driver’s personality and gender can be ignored. Instead, the self-driving behavior should be improved according to the driver’s individual habits. As for conducting the evaluation of the timing of the reminder for take-over, it is suggested to consider the driver’s gender in order to help improve the driver’s trust towards self-driving vehicles.
中文:
1. 內政部營建署 道路工程組(2009)。市區道路及附屬工程設計標準。取自https://www.cpami.gov.tw/%E6%9C%80%E6%96%B0%E6%B6%88%E6%81%AF/%E6%B3%95%E8%A6%8F%E5%85%AC%E5%91%8A/31-%E5%85%AC%E5%85%B1%E5%B7%A5%E7%A8%8B%E7%AF%87/10390-%E5%B8%82%E5%8D%80%E9%81%93%E8%B7%AF%E5%8F%8A%E9%99%84%E5%B1%AC%E5%B7%A5%E7%A8%8B%E8%A8%AD%E8%A8%88%E6%A8%99%E6%BA%96.html
2. 台灣國道高速公路局(2007)。高速公路噪音潛勢分析與防制措施之研究。取自https://www.freeway.gov.tw/Research.aspx?RID=15
3. 吳欣潔、林清同、簡廷諺、羅羽辰(2010)。車內導航顯示格式對駕駛績效及安全性之影響。第17屆中華民國人因工程學會年會暨研討會。
4. 李佩蓉(2010)。消費者在虛擬實境中的臨場感體驗與沉浸傾向之研究: 以商業動感模擬遊戲機為例。國立交通大學經營管理研究所碩士論文。
5. 張庭瑜(2017)。全球首輛量產Level 3自駕車奧迪A8亮相!不過只適用於「塞車」的時候。【部落格文字資料】。取自https://www.bnext.com.tw/article/
45364/audi-introduces-its-semi-autonomous-a8
6. 陳瑞霖(2019)。自駕車的自主駕訓考照場地,台灣智駕測試實驗室開幕歡迎各路智慧車前往測試「智慧」性能。【部落格文字資料】。取自https://technews.tw/2019/02/26/autonomic-car-self-training-driving-school-in-taiwan-car-lab-is-opening-and-welcome-smart-car-to-test-their-smartness/
7. 廖哲聖(2009)。憤怒駕駛傾向之量測與人格特質及性別角色之影響。國立交通大學運輸科技與管理學系碩士論文。
8. 蕭祖瑩(2017)。車輛側向碰撞警示之時間點與性別對駕駛行為的影響。國立清華大學工業工程與工程管理學系碩士論文。
英文:
1. Abbink, D. A., Mulder, M., & Boer, E. R. (2012). Haptic shared control: smoothly shifting control authority?. Cognition, Technology & Work, 14(1), 19-28.
2. Abe, G. & Richardson, J. (2006). Alarm timing, trust and driver expectation for forward collision warning systems. Applied ergonomics, 37(5), 577–586.
3. Aremyr, E., Jönsson, M., & Strömberg, H. (2018, August). Anthropomorphism: an investigation of its effect on trust in human-machine interfaces for highly automated vehicles. In Congress of the International Ergonomics Association (pp. 343-352). Springer, Cham.
4. BCG (2015). Self-Driving-Vehicle Features Could Represent a $42 Billion Market by 2025. [Web blog message]. Retrieved from https://www.bcg.com/d/press/
8jan2015-self-driving-vehicles-market-2025-832.
5. Bertollini, Gary P., Johnston, Charles M., Kuiper, James W., Kukula, JamesC., Kulczycka, Malgorzata A., and Thomas, WilliamE. (1994). The general motors driving simulator (No. 940179). SAE Technical Paper.
6. Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A., & Cruz-Neira, C. (2001). VR Juggler: A virtual platform for virtual reality application development. Paper presented at the Virtual Reality, 2001. Proceedings. IEEE, Yokohama, Japan.
7. Brooke, J. (1996). SUS-A quick and dirty usability scale. Usability evaluation in industry, 189(194), 4-7.
8. Burke, Jennifer L., Prewett, Matthew S., Gray, Ashley A., Yang, Liuquin, Stilson, Frederick R.B., Redden, Elizabeth, Coovert, Michael D., and Elliot, Linda R. (2006). Comparing the effects ofvisual-auditory and visual-tactile feedback on user performance: A meta-analysis. In Proceedings of the ACM8th International Conference on Multimodal Interfaces, Banff, Canada.
9. Caci, H., Nadalet, L., Baylé, F. J., Robert, P., & Boyer, P. (2003). Cross-cultural study of the impulsiveness-venturesomeness-empathy questionnaire (IVE-7). Comprehensive Psychiatry, 44(5), 381-387.
10. Campbell (2014). CES 2014: BMW unveils drifting self-driving car. [Web blog message] Retrieves from https://www.telegraph.co.uk/technology/10559399/
CES-2014-BMW-unveils-drifting-self-driving-car.html?wgu=272965_16644_
15710579789315_43db27fe8a&wgexpiry=1578833978&WT.mc_id=tmgoff_paff-4551_subsoffers_basic_planit&utm_source=tmgoff&utm_medium=tmgoff_
paff-4551&utm_content=subsoffers_basic&utm_campaign=tmgoff_paff-4551_subsoffers_basic_planit
11. Campbell, John L., Richard, Christian M., Brown, James L., and McCallum, Marvin (2007). Crash warning system interfaces: human factors insights and lessons learned. NHTSA report (HS-810 697).
12. Cunningham, M., & Regan, M. A. (2015, October). Autonomous vehicles: human factors issues and future research. In Proceedings of the 2015 Australasian Road safety conference (pp. 14-16).
13. Davidsson, S. & Alm, H. (2009, July). Applying the" Team Player" approach on car design. In International Conference on Engineering Psychology and Cognitive Ergonomics (pp. 349-357). Springer, Berlin, Heidelberg.
14. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
15. de Visser, E. J., Krueger, F., McKnight, P., Scheid, S., Smith, M., Chalk, S., & Parasuraman, R. (2012, September). The world is not enough: Trust in cognitive agents. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 56, No. 1, pp. 263-267). Sage CA: Los Angeles, CA: Sage Publications.
16. Deffenbacher, Jerry L., Oetting, Eugene R., and Lynch, Rebekah S. (1994). Development of a driving anger scale. Psychological reports, 74(1), 83–91.
17. Dzindolet, M. T., Peterson, S. A., Pomranky, R. A., Pierce, L. G., & Beck, H. P. (2003). The role of trust in automation reliance. International journal of human-computer studies, 58(6), 697-718.
18. Ekman, F. & Johansson, M. (2018). Trust in Automated Vehicles [Web blog message] https://www.sintef.no/globalassets/project/hfc/documents/01--hfc-halden-presentation-trust-in-automation-for-autonomous-vehicles-publ.pdf
19. Ekman, F., Johansson, M., & Sochor, J. (2016). Creating appropriate trust for autonomous vehicle systems: A framework for HMI Design (No. 16-3268).
20. Endsley, M.R. (1995). Toward a Theory of Situation Awareness in Dynamic Systems. Human Factors Journal 37(1), 32-64.
21. Eysenck, S., & Zuckerman, M. (1978). The relationship between sensation‐seeking and Eysenck's dimensions of personality. British Journal of Psychology, 69(4), 483-487.
22. Fishbein, M., & Ajzen, I. (1980). Understanding attitudes and predicting social behavior.
23. Fisman, R., & Khanna, T. (1999). Is trust a historical residue? Information flows and trust levels. Journal of Economic Behavior & Organization, 38(1), 79-92.
24. Fitch, G. M., Bowman, D. S., & Llaneras, R. E. (2014). Distracted driver performance to multiple alerts in a multiple-conflict scenario. Human factors, 56(8), 1497-1505.
25. Gavkare, A. M., Nanaware, N. L., & Surdi, A. D. (2013). Auditory reaction time, visual reaction time and whole body reaction time in athletes. Ind Med Gaz, 6, 214-9.
26. Ghazizadeh, M., Lee, J. D., & Boyle, L. N. (2012). Extending the Technology Acceptance Model to assess automation. Cognition, Technology & Work, 14(1), 39-49.
27. Gold, C., Körber, M., Hohenberger, C., Lechner, D., & Bengler, K. (2015). Trust in automation–Before and after the experience of take-over scenarios in a highly automated vehicle. Procedia Manufacturing, 3, 3025-3032.
28. Green B. D. (2010). Applying Human Characteristics of Trust to Animated Anthropomorphic Software Agents. State University of New York at Buffalo
29. Guznov, S., Nelson, A., Lyons, J., & Dycus, D. (2015, August). The effects of automation reliability and multi-tasking on trust and reliance in a simulated unmanned system control task. International Conference on Human-Computer Interaction (pp. 616-621). Springer, Cham.
30. Hancock, P. A. & Verwey, WillemB. (1997). Fatigue, workload and adaptive driversystems. Accident Analysis & Prevention, 29(4), 495–506.
31. Helldin, T., Falkman, G., Riveiro, M., & Davidsson, S. (2013, October). Presenting system uncertainty in automotive UIs for supporting trust calibration in autonomous driving. In Proceedings of the 5th international conference on automotive user interfaces and interactive vehicular applications (pp. 210-217). ACM.
32. Ho, G., Wheatley, D., & Scialfa, C. T. (2005). Age differences in trust and reliance of a medication management system. Interacting with Computers, 17(6), 690-710.
33. Hoff, K. A., & Bashir, M. (2015). Trust in automation: Integrating empirical evidence on factors that influence trust. Human factors, 57(3), 407-434.
34. Howard, D., & Dai, D. (2014, January). Public perceptions of self-driving cars: The case of Berkeley, California. In Transportation Research Board 93rd Annual Meeting (Vol. 14, No. 4502, pp. 1-16).
35. Jian, J. Y., Bisantz, A. M., & Drury, C. G. (2000). Foundations for an empirically determined scale of trust in automated systems. International Journal of Cognitive Ergonomics, 4(1), 53-71.
36. Jonah, B. A., Thiessen, R., & Au-Yeung, E. (2001). Sensation seeking, risky driving and behavioral adaptation. Accident Analysis & Prevention, 33(5), 679-684.
37. Jonsson, I. M., Harris, H., & Nass, C. (2008, April). How accurate must an in-car information system be? Consequences of accurate and inaccurate information in cars. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1665-1674).
38. Kantowitz, B. H., and Simsek, O. (2001). Secondary-task measures of driver workload. Stress, workload and fatigue.
39. Kaptein, Nico, Theeuwes, Jan, and Van Der Horst, Richard (1996). Driving simulator validity: Some considerations. Transportation Research Record: Journal of the Transportation Research Board, (1550), 30–36
40. Kiefer, R., LeBlanc, D., Palmer, M., Salinger, J., Deering, R., and Shulman, M. (1999). Development and validation of functional definitions and evaluation procedures for collision warning/avoidancesystems (DTNH22-95-H-07301). Washington DC: National Highway Traffic Safety Administration.
41. Koo, J., Kwac, J., Ju, W., Steinert, M., Leifer, L., & Nass, C. (2015). Why did my car just do that? Explaining semi-autonomous driving actions to improve driver understanding, trust, and performance. International Journal on Interactive Design and Manufacturing (IJIDeM), 9(4), 269-275.
42. Koul, S. & Eydgahi, A. (2018). Utilizing technology acceptance model (TAM) for driverless car technology adoption. Journal of technology management & innovation, 13(4), 37-46.
43. KPMG (2013). Self-Driving Cars: Are We Ready?.[Web blog message]. Retrieved from https://home.kpmg/content/dam/kpmg/pdf/2013/10/self-driving-cars-are-we-ready.pdf
44. Kraus, J., Scholz, D., Messner, E. M., Messner, M., & Baumann, M. (2020). Scared to Trust?–Predicting Trust in Highly Automated Driving by Depressiveness, Negative Self-Evaluations and State Anxiety. Frontiers in Psychology, 10, 2917.
45. Lee, J. D. & See, K. A. (2004). Trust in automation: Designing for appropriate reliance. Human factors, 46(1), 50-80.
46. Lee, J. D., Hoffman, J.D., and Hayes, E. (2004). Collision warning design to mitigate driver distraction. In Proceedings of the SIGCHI Conference on Human factors in Computing Systems. 65–72.
47. Lee, J. D., McGehee, Daniel V., Brown, Timothy L., and Reyes, M. L.(2002). Collision warning timing, driver distraction, and driver response toimminent rear-end collisions in a high-fidelity driving simulator. Human Factors and Ergonomics Society, 44(2), 314–334.
48. Lerner, Neil, Robinson, Emanuel, Singer, Jeremiah, Jenness, James, Huey, Richard, Baldwin, Carryl, and Fitch, Gregory (2014). Human factors for connected vehicles: Effective warning interface research findings (DOT HS 812 068). National Highway Traffic Safety Administration.
49. Levitan, L. E. E., Golembiewski, G., & Bloomfield, J. R. (1998). Human factors issues for automated highway systems. Journal of Intelligent Transportation System, 4(1-2), 21-47.
50. Lienert & Nellis (2019). Cheaper sensors could speed more self-driving cars to market by 2022. [Web blog message] Retrieves from https://www.euronews.com/2019/06/12/cheaper-sensors-could-speed-more-self-driving-cars-to-market-by-2022
51. Llanasas (2019). 5G’s Important Role in Autonomous Car Technology. [Web blog message] Retrieves from https://www.machinedesign.com/motion-control/5g-s-important-role-autonomous-car-technology
52. Marsh, S., & Meech, J. (2000, April). Trust in design. In CHI'00 extended abstracts on Human factors in computing systems (pp. 45-46). ACM.
53. McKnight, D. H., & Chervany, N. L. (2000). What is trust? A conceptual analysis and an interdisciplinary model. AMCIS 2000 Proceedings, 382.
54. Melcher, V., Rauh, S., Diederichs, F., Widlroither, H., & Bauer, W. (2015). Take-over requests for automated driving. Procedia Manufacturing, 3, 2867-2873.
55. Merat, N., Jamson, A. H., Lai, F. C., & Carsten, O. (2012). Highly automated driving, secondary task performance, and driver state. Human factors, 54(5), 762-771.
56. Merat, N., Jamson, A. H., Lai, F. C., Daly, M., & Carsten, O. M. (2014). Transition to manual: Driver behaviour when resuming control from a highly automated vehicle. Transportation research part F: traffic psychology and behaviour, 27, 274-282.
57. Merritt, S. M., & Ilgen, D. R. (2008). Not all trust is created equal: Dispositional and history-based trust in human-automation interactions. Human Factors, 50(2), 194-210.
58. Muir, B. M. (1987). Trust between humans and machines, and the design of decision aids. International journal of man-machine studies, 27(5-6), 527-539.
59. Muir, B. M., & Moray, N. (1996). Trust in automation. Part II. Experimental studies of trust and human intervention in a process control simulation. Ergonomics, 39(3), 429-460.
60. Mujber, T. S., Szecsi, T., & Hashmi, M. S. (2004). Virtual reality applications in manufacturing process simulation. Journal of materials processing technology, 155, 1834-1838.
61. National Highway Traffic Safety Administration. (2020) Risky driving: Distracted driving [Web blog message]. Retrieved from https://www.nhtsa.gov/risky-driving/distracted-driving
62. Nees, M. A. (2016, September). Acceptance of self-driving cars: An examination of idealized versus realistic portrayals with a self-driving car acceptance scale. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 60, No. 1, pp. 1449-1453). Sage CA: Los Angeles, CA: SAGE Publications.
63. Ososky, S., Schuster, D., Phillips, E., & Jentsch, F. G. (2013, March). Building appropriate trust in human-robot teams. In 2013 AAAI Spring Symposium Series.
64. Özkan, T., Lajunen, T., & Kaistinen, J. (2005). Traffic locus of control, driving skills and attitudes towards in-vehicle technologies (ISA & ACC). Proceedings of the 18th international cooperation on theories and concepts in traffic safety (ICTCT).
65. Pak, R., Fink, N., Price, M., Bass, B., & Sturre, L. (2012). Decision support aids with anthropomorphic characteristics influence trust and performance in younger and older adults. Ergonomics, 55(9), 1059-1072.
66. Parasuraman, R. & Manzey, D. H. (2010). Complacency and bias in human use of automation: An attentional integration. Human factors, 52(3), 381-410.
67. Parasuraman, R. & Miller, C. A. (2004). Trust and etiquette in high-criticality automated systems. Communications of the ACM, 47(4), 51-55.
68. Parasuraman, R. & Riley, V. (1997). Humans and automation: Use, misuse, disuse, abuse. Human factors, 39(2), 230-253.
69. Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2008). Situation awareness, mental workload, and trust in automation: Viable, empirically supported cognitive engineering constructs. Journal of cognitive engineering and decision making, 2(2), 140-160.
70. Payre, W., Cestac, J., & Delhomme, P. (2014). Intention to use a fully automated car: Attitudes and a priori acceptability. Transportation research part F: traffic psychology and behaviour, 27, 252-263.
71. Queensland Government (2016). Stopping distances on wet and dry roads. [Web message]. Retrieved from https://www.qld.gov.au/transport/safety/road-safety/driving-safely/stopping-distances/graph
72. Reed, M. P. & Green, P. A. (1999). Comparison of driving performance on-road and in a low-cost simulator using a concurrent telephone dialling task. Ergonomics, 42(8), 1015–1037.
73. Regan, M. A. (2004). New technologies in cars: Human factors and safety issues. Ergonomics Australia, 18(3), 6-16
74. Rudin-Brown, C. M., & Noy, Y. I. (2002). Investigation of behavioral adaptation to lane departure warnings. Transportation Research Record, 1803(1), 30-37.
75. Saffarian, M., de Winter, J. C., & Happee, R. (2012, September). Automated driving: human-factors issues and design solutions. In Proceedings of the human factors and ergonomics society annual meeting (Vol. 56, No. 1, pp. 2296-2300). Sage CA: Los Angeles, CA: Sage Publications
76. Sanchez, J., Fisk, A. D., & Rogers, W. A. (2004, September). Reliability and age-related effects on trust and reliance of a decision support aid. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 48, No. 3, pp. 586-589). Sage CA: Los Angeles, CA: Sage Publications.
77. Selcon, S. J., Taylor, R. M., & McKenna, F. P. (1995). Integrating multiple information sources: Usingredundancy in the design of warnings. Ergonomics, 38(11), 2362–2370.
78. Shuttleworth, J. (2019). SAE Standards News: J3016 automated-driving graphic update. [Web blog message] Retrieves from https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
79. Stanton, N. A. & Young, M. S. (2000). A proposed psychological model of driving automation. Theoretical Issues in Ergonomics Science, 1(4), 315-331.
80. Stewart (2019). Self-driving cars have to be safer than regular cars. The question is how much. [Web blog message] Retrieves from https://www.vox.com/recode/2019/5/17/18564501/self-driving-car-morals-safety-tesla-waymo?__c=1
81. Suzuki, Keisuke & Jansson, Hakan (2003). An analysis of driver’s steering behavior during auditory or haptic warnings for the designing of lane departure warning system. Society of Automotive Engineers of Japan Review, 24(1), 65–70.
82. Szymaszek, A. (2014). Between challenge and solution STATUSCOPE - a tool for designing status comunication in highly automated vehicles , Gothenburg, Sweden : Chalmers University of technology.
83. Thill, S., Hemeren, P. E., & Nilsson, M. (2014, March). The apparent intelligence of a system as a factor in situation awareness. In 2014 IEEE International Inter-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA) (pp. 52-58). IEEE.
84. Toffetti, A., Wilschut, E. S., Martens, M. H., Schieben, A., Rambaldini, A., Merat, N., & Flemisch, F. (2009). CityMobil: Human factor issues regarding highly automated vehicles on eLane. Transportation research record, 2110(1), 1-8.
85. Verberne, F. M., Ham, J., & Midden, C. J. (2012). Trust in smart systems: Sharing driving goals and giving information to increase trustworthiness and acceptability of smart systems in cars. Human factors, 54(5), 799-810.
86. Waytz, A., Heafner, J., & Epley, N. (2014). The mind in the machine: Anthropomorphism increases trust in an autonomous vehicle. Journal of Experimental Social Psychology, 52, 113-117.
87. Wickens, C. D., Li, H., Santamaria, A., Sebok, A., & Sarter, N. B. (2010, September). Stages and levels of automation: An integrated meta-analysis. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 54, No. 4, pp. 389-393). Sage CA: Los Angeles, CA: Sage Publications.
88. Wiener, E. L., & Curry, R. E. (1980). Flight-deck automation: Promises and problems. Ergonomics, 23(10), 995-1011.
89. Zeeb, K., Buchner, A., & Schrauf, M. (2015). What determines the take-over time? An integrated model approach of driver take-over after automated driving. Accident Analysis & Prevention, 78, 212-221.
90. Zindler, K., & Geiβ, N. (2016). Vehicle ego-localization in autonomous lane-keeping evasive maneuvers. IFAC-PapersOnLine, 49(11), 160-167.
91. Zuckerman, M. (1994). Behavioral expressions and biosocial bases of sensation seeking. Cambridge university press.
德文:
1. Arndt, S. (2011). Evaluierung der akzeptanz von fahrerassistenzsystemen. Wiesbaden, Deutschland: VS Verlag für Sozialwissenschaften.
2. Damböck, D., & Bengler, K. (2012). Übernahmezeiten beim hochautomatisierten Fahren. In 5. Tagung Fahrerassistenz.
3. Petermann-Stock, I., Hackenberg, L., Muhr, T., & Mergl, C. (2013). Wie lange braucht der Fahrer-Eine Analyse zu Übernahmezeiten aus verschiedenen Nebentätigkeiten während einer hochautomatisierten Staufahrt. 6. Tagung Fahrerassistenzsysteme. Der Weg zum automatische.