簡易檢索 / 詳目顯示

研究生: 陳玠男
Chen, Chieh Nan
論文名稱: 溫度敏感型胺基酸水膠包覆薑黃素之控制釋放與抗腫瘤之研究
Controlled Release of Curcumin from a Thermoresponsive Polypeptide Hydrogel for Anti-tumor Therapy
指導教授: 朱一民
Chu, I Ming
口試委員: 蔡德豪
Tsai De Hao
駱俊良
Lo Chun Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 61
中文關鍵詞: 溫度敏感型胺基酸水膠薑黃素藥物釋放
外文關鍵詞: polypeptide hydrogel, curcumin, drug release
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 溫度敏感型胺基酸水膠具有著良好的生物相容性及低成膠濃度,可藉由人體溫度與環境溫度的改變來使水膠高分子水溶液在室溫下以溶液狀注入到人體,原位成膠做藥物釋放或組織工程應用。本研究在於探討溫度敏感型胺基酸水膠 – 甲基化聚乙二醇-聚乙基左旋榖氨酸(mPEG-PELG)包覆薑黃素與抗癌藥物之控制釋放研究。可藉由甲基化聚乙二醇-聚乙基左旋榖氨酸(mPEG-PELG) 的乙基疏水側鍊來穩定並包覆疏水型藥物薑黃素。薑黃素是一種疏水型的抗癌藥物,由於疏水性質太強,對水的溶解度極低,目前利用載體來輸送此多功能型藥物的研究已越來越廣泛。本篇的主要想法是利用疏水側鍊乙基與胺基酸材料具有的二級結構來包覆並穩定易降解的薑黃素藥物,再利用胺基酸材料特有的酵素降解特性達到長期的降解緩慢釋放。此高分子已成功合成並經氫譜核磁共振儀(1H-NMR), 傅立葉紅外線轉換儀 (FT-IR), 掃描式電子顯微鏡 (SEM)等鑑定。藥物釋放部分利用高效能液相層析儀(HPLC)針對薑黃素的釋放濃度作分析。針對這些結果,證明此疏水支鏈的mPEG-PELG溫感型胺基酸水膠在疏水藥物控制釋放有相當的應用潛力。


    Polypeptide thermosensitive hydrogel is an excellent candidate as smart device to deliver drugs and cells due to its remarkable biocompatibility, low gelation concentration, and respond to temperature stimuli. It can be easily injected as a polymer solution into the patient’s body where it undergoes gelation due to an elevation in temperature. Poly (ethylene glycol) monomethyl ether-poly (ethyl-l-glutamate) (mPEG-PELG) contains hydrophobic side chains –C2H5. This polymer is useful in encapsulating and stabilizing hydrophobic drugs. In this study, we plan to focus on the hydrophobic drug curcumin, which requires a proper carrier for delivery into the body due its insolubility in water. Our principal is to use mPEG-PELG to stabilize curcumin, inject the curcumin-loaded hydrogel into the tumor site, and allow the enzymatically-sensitive hydrogel to be degraded by body fluids and release the drug. The polymers of interest have been successfully synthesized and characterized by 1H-NMR, FT-IR, DLS, TEM, SEM and CMC. Curcumin loading content and drug release were quantitatively characterized using HPLC. The results show the promising potential of this polymeric hydrogel in drug delivery.

    摘要 i ABSTRACT ii TABLE OF CONTENTS iv LIST OF FIGURES viii LIST OF TABLES xii 1. Introduction & Literature review 1 1.1- Tumor and Cancer 1 1.1.1- Surgery 1 1.1.2- Chemotherapy 3 1.1.3- Radiation therapy 4 1.1.4- Immunotherapy 5 1.1.5- Targeting Therapy 7 1.2- Curcumin 9 1.3- Hydrogels 14 1.3.1- Thermo-responsive (Thermosensitive) Hydrogels 16 1.3.2- Thermosensitive Polypeptide Hydrogels 18 1.3.2.1- Amide Bond and Primary Structure 19 1.3.2.2- Secondary Structure 20 1.3.2.3- Tertiary Structure 21 1.3.3- Thermosensitive mPEG-PELG Polypeptide Hydrogel 22 2. Materials and Methods 24 2.1- Materials 24 2.2- Flow Chart of Experiments 25 2.3- End group modification of mPEG 25 2.4- Synthesis of γ-Ethyl-L-glutamate 26 2.5- Synthesis of γ-Ethyl-L-glutamate N-Carboxyanhydrides 26 2.6- Ring Opening Polymerization of Poly(ethylene glycol)-block-poly(γ-ethyl-L-glutamate) 27 2.7- Characterization of Copolymer 28 2.8- Transmission Electron Microscopy (TEM) 28 2.9- Sol-Gel Transition Diagram 29 2.10- Scanning Electron Microscopy (SEM) 29 2.11- Preparation of P3-Cur Gel 30 2.12- Confocal Images of P3-Cur Gel 30 2.13- Rheology Test of P3 & P3-Cur Gel 30 2.14- In Vitro Disintegration of Hydrogels 31 2.15- In-vitro cytotoxicity 31 2.16- High Performance Liquid Chromatography (HPLC) Conditions 32 2.17- Preparation of Stock Solution and Calibration Curve 33 2.18- Stability of Curcumin in Various Solution Condition 33 2.19- Entrapment and Curcumin Release 33 3. Results and Discussions 35 3.1- Characterization of Polymer 35 3.2- Transmission Electron Microscopy (TEM) 40 3.3- Gelation Profile 41 3.4- Scanning Electronic Microscopy(SEM) 42 3.5- Appearance of Hydrogel 42 3.6- Confocal Image of P3-Cur Gel 44 3.7- Rheology Test of P3 & P3-Cur Gel 45 3.8- In-vitro Degradation of Hydrogels 46 3.9- In-vitro Cytotoxicity 47 3.10- Stability of Curcumin in Various Solution Condition 49 3.11- Entrapment and Curcumin Release 51 4. Conclusion and Future Work 54 5. References 57 APPENDIX vi

    [1] Surgery. Types of treatment. National Cancer Institute.
    [2] AJCC Cancer Staging Manual. 7th ed. American Joint Committee on Cancer.: New York, NY Springer; 2010.
    [3] Chemotherapy. Types of treatment. National Cancer Institute.
    [4] Radiation therapy. Types of treatment. National Cancer Institute.
    [5] Cancer Immunotherapy. American Cancer Society.
    [6] Immunotherapy. Types of treatment. National Cancer Institute.
    [7] Lollini P-L, Cavallo F, Nanni P, Forni G. Vaccines for tumour prevention. Nat Rev Cancer. 2006;6:204-16.
    [8] Gerber DE. Targeted therapies: a new generation of cancer treatments. American family physician. 2008;77:311-9.
    [9] Targeting therapy. Types of treatment. National Cancer Institute.
    [10] Bajpai AK, Shukla SK, Bhanu S, Kankane S. Responsive polymers in controlled drug delivery. Progress in polymer science. 2008;33:1088-118.
    [11] Boyanapalli SS, Kong A-NT. “Curcumin, the King of Spices”: Epigenetic Regulatory Mechanisms in the Prevention of Cancer, Neurological, and Inflammatory Diseases. Curr Pharmacol Rep. 2015;1:129-39.
    [12] Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014;35:3365-83.
    [13] Kamat AM, Sethi G, Aggarwal BB. Curcumin potentiates the apoptotic effects of chemotherapeutic agents and cytokines through down-regulation of nuclear factor-κB and nuclear factor-κB–regulated gene products in IFN-α–sensitive and IFN-α–resistant human bladder cancer cells. Molecular Cancer Therapeutics. 2007;6:1022-30.
    [14] Aggarwal BB. Targeting Inflammation-Induced Obesity and Metabolic Diseases by Curcumin and Other Nutraceuticals. Annual Review of Nutrition. 2010;30:173-99.
    [15] Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. The International Journal of Biochemistry & Cell Biology. 2009;41:40-59.
    [16] Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer research. 2003;23:363-98.
    [17] Olszanecki R, Jawien J, Gajda M, Mateuszuk L, Gebska A, Korabiowska M, et al. Effect of curcumin on atherosclerosis in apoE/LDLR-double knockout mice. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society. 2005;56:627-35.
    [18] Shah BH, Nawaz Z, Pertani SA, Roomi A, Mahmood H, Saeed SA, et al. Inhibitory effect of curcumin, a food spice from turmeric, on platelet-activating factor- and arachidonic acid-mediated platelet aggregation through inhibition of thromboxane formation and Ca2+ signaling. Biochemical Pharmacology. 1999;58:1167-72.
    [19] Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry E, et al. Chemopreventive and therapeutic effects of curcumin. Cancer Letters. 2005;223:181-90.
    [20] Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: An “old-age” disease with an “age-old” solution. Cancer Letters. 2008;267:133-64.
    [21] Ravindran J, Prasad S, Aggarwal B. Curcumin and Cancer Cells: How Many Ways Can Curry Kill Tumor Cells Selectively? AAPS J. 2009;11:495-510.
    [22] Balaji S, Chempakam B. Toxicity prediction of compounds from turmeric (Curcuma longa L). Food and Chemical Toxicology. 2010;48:2951-9.
    [23] Kurien BT, Singh A, Matsumoto H, Scofield RH. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay and drug development technologies. 2007;5:567-76.
    [24] Tønnesen HH, Másson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. International Journal of Pharmaceutics. 2002;244:127-35.
    [25] Wang Y-J, Pan M-H, Cheng A-L, Lin L-I, Ho Y-S, Hsieh C-Y, et al. Stability of curcumin in buffer solutions and characterization of its degradation products. Journal of Pharmaceutical and Biomedical Analysis. 1997;15:1867-76.
    [26] Yang K-Y, Lin L-C, Tseng T-Y, Wang S-C, Tsai T-H. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC–MS/MS. Journal of Chromatography B. 2007;853:183-9.
    [27] Monteiro N, Martins A, Reis RL, Neves NM. Liposomes in tissue engineering and regenerative medicine. Journal of The Royal Society Interface. 2014;11.
    [28] Altunbas A, Lee SJ, Rajasekaran SA, Schneider JP, Pochan DJ. Encapsulation of Curcumin in Self-Assembling Peptide Hydrogels as Injectable Drug Delivery Vehicles. Biomaterials. 2011;32:5906-14.
    [29] Harada T, Pham D-T, Lincoln SF, Kee TW. The Capture and Stabilization of Curcumin Using Hydrophobically Modified Polyacrylate Aggregates and Hydrogels. The Journal of Physical Chemistry B. 2014;118:9515-23.
    [30] Sun Y, Du L, Liu Y, Li X, Li M, Jin Y, et al. Transdermal delivery of the in situ hydrogels of curcumin and its inclusion complexes of hydroxypropyl-beta-cyclodextrin for melanoma treatment. Int J Pharm. 2014;469:31-9.
    [31] Nguyen MK, Alsberg E. Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Progress in polymer science. 2014;39:1236-65.
    [32] Ruel-Gariepy E, Leroux JC. In situ-forming hydrogels--review of temperature-sensitive systems. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2004;58:409-26.
    [33] Sharma PK, Reilly MJ, Jones DN, Robinson PM, Bhatia SR. The effect of pharmaceuticals on the nanoscale structure of PEO-PPO-PEO micelles. Colloids and surfaces B, Biointerfaces. 2008;61:53-60.
    [34] Cheng Y, He C, Ding J, Xiao C, Zhuang X, Chen X. Thermosensitive hydrogels based on polypeptides for localized and sustained delivery of anticancer drugs. Biomaterials. 2013;34:10338-47.
    [35] Bakaic E, Smeets NMB, Hoare T. Injectable hydrogels based on poly(ethylene glycol) and derivatives as functional biomaterials. RSC Advances. 2015;5:35469-86.
    [36] Zhang S, Alvarez DJ, Sofroniew MV, Deming TJ, Deming TJ. Design and Synthesis of Nonionic Copolypeptide Hydrogels with Reversible Thermoresponsive and Tunable Physical Properties. 2015.
    [37] Breslow R. Artificial Enzymes. Artificial Enzymes: Wiley-VCH Verlag GmbH & Co. KGaA; 2006. p. 1-35.
    [38] LaMorte WW. Secondary Sturcture of Proteins. Basic Cell Biology: Boston University School of Public Health; October 13, 2014.
    [39] Protein Structure. Particle sciences - Technical Brief: Particle Science Drug Development Services; 2009.
    [40] Donald Voet JGV. Biochemistry. 4th edition ed: Unites states of America: JOHN WILEY & SONS , INC; 2004.
    [41] Cheng Y, He C, Xiao C, Ding J, Zhuang X, Huang Y, et al. Decisive Role of Hydrophobic Side Groups of Polypeptides in Thermosensitive Gelation. Biomacromolecules. 2012;13:2053-9.
    [42] Xiao C, Zhao C, He P, Tang Z, Chen X, Jing X. Facile Synthesis of Glycopolypeptides by Combination of Ring-Opening Polymerization of an Alkyne-Substituted N-carboxyanhydride and Click “Glycosylation”. Macromolecular Rapid Communications. 2010;31:991-7.
    [43] Mahou R, Wandrey C. Versatile Route to Synthesize Heterobifunctional Poly(ethylene glycol) of Variable Functionality for Subsequent Pegylation. Polymers. 2012.
    [44] Held P. Rapid Critical Micelle Concentration (CMC) Determination Using Fluorescence Polarization. Application Notes: BioTek; 2014.
    [45] Zhang Y, Yang C, Wang W, Liu J, Liu Q, Huang F, et al. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Scientific reports. 2016;6:21225.
    [46] Nagahama K, Kawano D, Oyama N, Takemoto A, Kumano T, Kawakami J. Self-Assembling Polymer Micelle/Clay Nanodisk/Doxorubicin Hybrid Injectable Gels for Safe and Efficient Focal Treatment of Cancer. Biomacromolecules. 2015;16:880-9.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE